BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 16216305)

  • 1. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils.
    Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H
    Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.
    Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R
    Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.
    Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E
    J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.
    Martínez-Iñigo MJ; Pérez-Sanz A; Ortiz I; Alonso J; Alarcón R; García P; Lobo MC
    Chemosphere; 2009 Jun; 75(10):1376-81. PubMed ID: 19345981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Diversity of microbial genes in paddy soil stressed by cadmium using DGGE].
    Duan XJ; Min H
    Huan Jing Ke Xue; 2004 Sep; 25(5):122-6. PubMed ID: 15623038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator.
    Chen Y; Wang Y; Wu W; Lin Q; Xue S
    Sci Total Environ; 2006 Mar; 356(1-3):247-55. PubMed ID: 15935447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils.
    Yao HY; Liu YY; Xue D; Huang CY
    J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment.
    Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H
    FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial diversity in soils around a lead and zinc mine.
    Hu Q; Qi HY; Zeng JH; Zhang HX
    J Environ Sci (China); 2007; 19(1):74-9. PubMed ID: 17913157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial diversity promotes community stability and functional resilience after perturbation.
    Girvan MS; Campbell CD; Killham K; Prosser JI; Glover LA
    Environ Microbiol; 2005 Mar; 7(3):301-13. PubMed ID: 15683391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China.
    Luo XS; Zhou DM; Liu XH; Wang YJ
    J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil.
    Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V
    Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B; Pesaro M; Rüdt A; Widmer F
    Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil.
    Mahmood S; Paton GI; Prosser JI
    Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration.
    Cornejo P; Meier S; Borie G; Rillig MC; Borie F
    Sci Total Environ; 2008 Nov; 406(1-2):154-60. PubMed ID: 18762323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.