BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16216312)

  • 1. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil.
    Yang J; Mosby D
    Sci Total Environ; 2006 Jul; 366(1):136-42. PubMed ID: 16216312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro lead bioaccessibility and phosphate leaching as affected by surface application of phosphoric acid in lead-contaminated soil.
    Yang J; Mosby DE; Casteel SW; Blanchar RW
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):399-405. PubMed ID: 12399910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro amendment and grass seeding in urban yards.
    Farfel MR; Orlova AO; Chaney RL; Lees PS; Rohde C; Ashley PJ
    Sci Total Environ; 2005 Mar; 340(1-3):81-95. PubMed ID: 15752494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term stability and risk assessment of lead in mill waste treated by soluble phosphate.
    Tang X; Yang J
    Sci Total Environ; 2012 Nov; 438():299-303. PubMed ID: 23014502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil.
    Yang J; Mosby DE; Casteel SW; Blanchar RW
    Environ Sci Technol; 2001 Sep; 35(17):3553-9. PubMed ID: 11563662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils.
    Suedel BC; Nicholson A; Day CH; Spicer J
    Integr Environ Assess Manag; 2006 Oct; 2(4):355-64. PubMed ID: 17069177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources, sinks, and exposure pathways of lead in urban garden soil.
    Clark HF; Brabander DJ; Erdil RM
    J Environ Qual; 2006; 35(6):2066-74. PubMed ID: 17071875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    J Environ Qual; 2006; 35(6):2075-83. PubMed ID: 17071876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heap leaching of lead contaminated soil using biodegradable chelator [S,S]-ethylenediamine disuccinate.
    Finzgar N; Kos B; Lestan D
    Environ Technol; 2005 May; 26(5):553-60. PubMed ID: 15974273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China.
    Wang HH; Li LQ; Wu XM; Pan GX
    J Environ Sci (China); 2006; 18(3):482-7. PubMed ID: 17294644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review.
    Zia MH; Codling EE; Scheckel KG; Chaney RL
    Environ Pollut; 2011 Oct; 159(10):2320-7. PubMed ID: 21616569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils.
    Juhasz AL; Weber J; Smith E
    J Hazard Mater; 2011 Feb; 186(2-3):1870-9. PubMed ID: 21247691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.