BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 16216371)

  • 1. Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms.
    Bremer PJ; Fillery S; McQuillan AJ
    Int J Food Microbiol; 2006 Feb; 106(3):254-62. PubMed ID: 16216371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces.
    DeQueiroz GA; Day DF
    J Appl Microbiol; 2007 Oct; 103(4):794-802. PubMed ID: 17897181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a laboratory scale clean-in-place system to test the effectiveness of "natural" antimicrobials against dairy biofilms.
    Dufour M; Simmonds RS; Bremer PJ
    J Food Prot; 2004 Jul; 67(7):1438-43. PubMed ID: 15270498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers.
    Chorianopoulos NG; Giaouris ED; Skandamis PN; Haroutounian SA; Nychas GJ
    J Appl Microbiol; 2008 Jun; 104(6):1586-96. PubMed ID: 18217930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model system for evaluating surface disinfection in dairy factory environments.
    Knight GC; Craven HM
    Int J Food Microbiol; 2010 Feb; 137(2-3):161-7. PubMed ID: 20022125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks.
    Shaheen R; Svensson B; Andersson MA; Christiansson A; Salkinoja-Salonen M
    Food Microbiol; 2010 May; 27(3):347-55. PubMed ID: 20227599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli O157:H7 survival, biofilm formation and acid tolerance under simulated slaughter plant moist and dry conditions.
    Skandamis PN; Stopforth JD; Ashton LV; Geornaras I; Kendall PA; Sofos JN
    Food Microbiol; 2009 Feb; 26(1):112-9. PubMed ID: 19028314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of selected premilking teat-cleaning regimes in reducing teat microbial load on commercial dairy farms.
    Gibson H; Sinclair LA; Brizuela CM; Worton HL; Protheroe RG
    Lett Appl Microbiol; 2008 Mar; 46(3):295-300. PubMed ID: 18179447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel.
    Parkar SG; Flint SH; Brooks JD
    J Appl Microbiol; 2004; 96(1):110-6. PubMed ID: 14678164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the potential suitability of selected commercially available enzymes for cleaning-in-place (CIP) in the dairy industry.
    Boyce A; Piterina AV; Walsh G
    Biofouling; 2010 Oct; 26(7):837-50. PubMed ID: 20931416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.
    Blel W; Dif M; Sire O
    J Environ Manage; 2015 May; 155():1-10. PubMed ID: 25770957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of bacterial strains isolated from a beef-processing plant following cleaning and disinfection - Influence of isolated strains on biofilm formation by Sakaï and EDL 933 E. coli O157:H7.
    Marouani-Gadri N; Augier G; Carpentier B
    Int J Food Microbiol; 2009 Jul; 133(1-2):62-7. PubMed ID: 19446903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of ozonation and chlorination for the disinfection of stainless steel surfaces.
    Greene AK; Few BK; Serafini JC
    J Dairy Sci; 1993 Nov; 76(11):3617-20. PubMed ID: 8270705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry.
    Boyce A; Walsh G
    Chemosphere; 2012 Jun; 88(2):211-8. PubMed ID: 22464862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of biofilms by chemical disinfectants and mechanical cleaning.
    Exner M; Tuschewitzki GJ; Scharnagel J
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Apr; 183(5-6):549-63. PubMed ID: 3109156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial decontamination of DUWL biofilm using Oxygenal 6.
    Szymańska J
    Ann Agric Environ Med; 2006; 13(1):163-7. PubMed ID: 16841887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and remediation of bulk soap dispensers for biofilm.
    Lorenz LA; Ramsay BD; Goeres DM; Fields MW; Zapka CA; Macinga DR
    Biofouling; 2012; 28(1):99-109. PubMed ID: 22257312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term effects of disinfectants on the community composition of drinking water biofilms.
    Roeder RS; Lenz J; Tarne P; Gebel J; Exner M; Szewzyk U
    Int J Hyg Environ Health; 2010 Jun; 213(3):183-9. PubMed ID: 20494617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system.
    Lee DG; Park SJ; Kim SJ
    J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus.
    Rieu A; Lemaître JP; Guzzo J; Piveteau P
    Int J Food Microbiol; 2008 Aug; 126(1-2):76-82. PubMed ID: 18554739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.