BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16216575)

  • 1. Intermediate states of ribonuclease III in complex with double-stranded RNA.
    Gan J; Tropea JE; Austin BP; Court DL; Waugh DS; Ji X
    Structure; 2005 Oct; 13(10):1435-42. PubMed ID: 16216575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncatalytic assembly of ribonuclease III with double-stranded RNA.
    Blaszczyk J; Gan J; Tropea JE; Court DL; Waugh DS; Ji X
    Structure; 2004 Mar; 12(3):457-66. PubMed ID: 15016361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer.
    Takeshita D; Zenno S; Lee WC; Nagata K; Saigo K; Tanokura M
    J Mol Biol; 2007 Nov; 374(1):106-20. PubMed ID: 17920623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for double-stranded RNA processing by Dicer.
    Macrae IJ; Zhou K; Li F; Repic A; Brooks AN; Cande WZ; Adams PD; Doudna JA
    Science; 2006 Jan; 311(5758):195-8. PubMed ID: 16410517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for non-catalytic and catalytic activities of ribonuclease III.
    Ji X
    Acta Crystallogr D Biol Crystallogr; 2006 Aug; 62(Pt 8):933-40. PubMed ID: 16855311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM; Crouch RJ
    RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stepwise model for double-stranded RNA processing by ribonuclease III.
    Gan J; Shaw G; Tropea JE; Waugh DS; Court DL; Ji X
    Mol Microbiol; 2008 Jan; 67(1):143-54. PubMed ID: 18047582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.
    Blaszczyk J; Tropea JE; Bubunenko M; Routzahn KM; Waugh DS; Court DL; Ji X
    Structure; 2001 Dec; 9(12):1225-36. PubMed ID: 11738048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants of RNA recognition and cleavage by Dicer.
    MacRae IJ; Zhou K; Doudna JA
    Nat Struct Mol Biol; 2007 Oct; 14(10):934-40. PubMed ID: 17873886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of the RNase III gene of rock bream iridovirus.
    Zenke K; Kim KH
    Arch Virol; 2008; 153(9):1651-6. PubMed ID: 18641914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
    Chien CY; Xu Y; Xiao R; Aramini JM; Sahasrabudhe PV; Krug RM; Montelione GT
    Biochemistry; 2004 Feb; 43(7):1950-62. PubMed ID: 14967035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.