BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 16216844)

  • 1. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.
    Zhang J; Yu H; Zhang Y; Wang Y; Li M; Zhang J; Duan L; Zhang M; Li Z
    J Exp Bot; 2016 Mar; 67(5):1339-55. PubMed ID: 26743432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress.
    De Costa W; Zörb C; Hartung W; Schubert S
    Physiol Plant; 2007 Oct; 131(2):311-21. PubMed ID: 18251902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake.
    Martinez-Ballesta Mdel C; Bastías E; Zhu C; Schäffner AR; González-Moro B; González-Murua C; Carvajal M
    Physiol Plant; 2008 Apr; 132(4):479-90. PubMed ID: 18334001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.
    Jia W; Zhang J; Liang J
    J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.
    Ernst L; Goodger JQ; Alvarez S; Marsh EL; Berla B; Lockhart E; Jung J; Li P; Bohnert HJ; Schachtman DP
    J Exp Bot; 2010 Jul; 61(12):3395-405. PubMed ID: 20566566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress.
    Aoki A; Kanegami A; Mihara M; Kojima T; Shiraiwa M; Takahara H
    Gene; 2005 Aug; 356():135-45. PubMed ID: 15964719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.
    Sang J; Zhang A; Lin F; Tan M; Jiang M
    Cell Res; 2008 May; 18(5):577-88. PubMed ID: 18364679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl.
    Hong CY; Hsu YT; Tsai YC; Kao CH
    J Exp Bot; 2007; 58(12):3273-83. PubMed ID: 17916638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.
    Wang C; Yang C; Gao C; Wang Y
    Tree Physiol; 2009 Dec; 29(12):1607-19. PubMed ID: 19808707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues.
    Wang J; Ding H; Zhang A; Ma F; Cao J; Jiang M
    J Integr Plant Biol; 2010 May; 52(5):442-52. PubMed ID: 20537040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Involvement of nitric oxide in regulation of salt stress-induced ABA accumulation in maize seedling].
    Chen K; Li J; Tang J; Zhao FG; Liu X
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):577-82. PubMed ID: 17075182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves.
    Fricke W; Akhiyarova G; Veselov D; Kudoyarova G
    J Exp Bot; 2004 May; 55(399):1115-23. PubMed ID: 15047763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress.
    Yue G; Zhuang Y; Li Z; Sun L; Zhang J
    Biosci Rep; 2008 Jun; 28(3):125-34. PubMed ID: 18422487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress.
    Barrero JM; Rodríguez PL; Quesada V; Piqueras P; Ponce MR; Micol JL
    Plant Cell Environ; 2006 Oct; 29(10):2000-8. PubMed ID: 16930325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance.
    Melkonian J; Yu LX; Setter TL
    J Exp Bot; 2004 Aug; 55(403):1751-60. PubMed ID: 15235000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress.
    Hu X; Zhang A; Zhang J; Jiang M
    Plant Cell Physiol; 2006 Nov; 47(11):1484-95. PubMed ID: 16990290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit.
    Ren H; Gao Z; Chen L; Wei K; Liu J; Fan Y; Davies WJ; Jia W; Zhang J
    J Exp Bot; 2007; 58(2):211-9. PubMed ID: 16982652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions.
    Poroyko V; Spollen WG; Hejlek LG; Hernandez AG; LeNoble ME; Davis G; Nguyen HT; Springer GK; Sharp RE; Bohnert HJ
    J Exp Bot; 2007; 58(2):279-89. PubMed ID: 16990373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.