BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16216885)

  • 1. Determination of peptide substrate specificity for mu-calpain by a peptide library-based approach: the importance of primed side interactions.
    Cuerrier D; Moldoveanu T; Davies PL
    J Biol Chem; 2005 Dec; 280(49):40632-41. PubMed ID: 16216885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility.
    Stabach PR; Cianci CD; Glantz SB; Zhang Z; Morrow JS
    Biochemistry; 1997 Jan; 36(1):57-65. PubMed ID: 8993318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the sequential determinants of calpain cleavage.
    Tompa P; Buzder-Lantos P; Tantos A; Farkas A; Szilágyi A; Bánóczi Z; Hudecz F; Friedrich P
    J Biol Chem; 2004 May; 279(20):20775-85. PubMed ID: 14988399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling of calpain activity with a series of FRET-based substrates.
    Kelly JC; Cuerrier D; Graham LA; Campbell RL; Davies PL
    Biochim Biophys Acta; 2009 Oct; 1794(10):1505-9. PubMed ID: 19555780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-Based Assays to Determine Calpain Activity.
    McCartney CE; Davies PL
    Methods Mol Biol; 2019; 1915():39-55. PubMed ID: 30617794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array.
    Shinkai-Ouchi F; Koyama S; Ono Y; Hata S; Ojima K; Shindo M; duVerle D; Ueno M; Kitamura F; Doi N; Takigawa I; Mamitsuka H; Sorimachi H
    Mol Cell Proteomics; 2016 Apr; 15(4):1262-80. PubMed ID: 26796116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.
    Barré O; Dufour A; Eckhard U; Kappelhoff R; Béliveau F; Leduc R; Overall CM
    PLoS One; 2014; 9(9):e105984. PubMed ID: 25211023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The substrate specificity of a recombinant cysteine protease from Leishmania mexicana: application of a combinatorial peptide library approach.
    St Hilaire PM; Alves LC; Sanderson SJ; Mottram JC; Juliano MA; Juliano L; Coombs GH; Meldal M
    Chembiochem; 2000 Aug; 1(2):115-22. PubMed ID: 11828405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo.
    McCartney CE; MacLeod JA; Greer PA; Davies PL
    Biochim Biophys Acta Mol Cell Res; 2018 Feb; 1865(2):221-230. PubMed ID: 29104086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel calpain inhibitor using phage display.
    Guttmann RP; Day GA; Wang X; Bottiggi KA
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1087-92. PubMed ID: 15979564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields.
    Fan YX; Zhang Y; Shen HB
    Proteins; 2013 Apr; 81(4):622-34. PubMed ID: 23180633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells.
    Glantz SB; Cianci CD; Iyer R; Pradhan D; Wang KK; Morrow JS
    Biochemistry; 2007 Jan; 46(2):502-13. PubMed ID: 17209560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes.
    Turk BE; Cantley LC
    Methods; 2004 Apr; 32(4):398-405. PubMed ID: 15003602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools.
    Arnold D; Keilholz W; Schild H; Dumrese T; Stevanović S; Rammensee HG
    Eur J Biochem; 1997 Oct; 249(1):171-9. PubMed ID: 9363769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of limited proteolytic activity of calpain-7 using non-physiological substrates in mammalian cells.
    Maemoto Y; Kiso S; Shibata H; Maki M
    FEBS J; 2013 Jun; 280(11):2594-607. PubMed ID: 23497113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides.
    Wang P; Byeon IJ; Liao H; Beebe KD; Yongkiettrakul S; Pei D; Tsai MD
    J Mol Biol; 2000 Sep; 302(4):927-40. PubMed ID: 10993733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the substrate specificity of conventional calpains.
    Sorimachi H; Mamitsuka H; Ono Y
    Biol Chem; 2012 Sep; 393(9):853-71. PubMed ID: 22944687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB.
    Obata T; Yaffe MB; Leparc GG; Piro ET; Maegawa H; Kashiwagi A; Kikkawa R; Cantley LC
    J Biol Chem; 2000 Nov; 275(46):36108-15. PubMed ID: 10945990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.