These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 16217033)
1. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Lee MJ; Tasaki T; Moroi K; An JY; Kimura S; Davydov IV; Kwon YT Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15030-5. PubMed ID: 16217033 [TBL] [Abstract][Full Text] [Related]
2. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Hu RG; Sheng J; Qi X; Xu Z; Takahashi TT; Varshavsky A Nature; 2005 Oct; 437(7061):981-6. PubMed ID: 16222293 [TBL] [Abstract][Full Text] [Related]
3. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. Lee MJ; Kim DE; Zakrzewska A; Yoo YD; Kim SH; Kim ST; Seo JW; Lee YS; Dorn GW; Oh U; Kim BY; Kwon YT J Biol Chem; 2012 Jul; 287(28):24043-52. PubMed ID: 22577142 [TBL] [Abstract][Full Text] [Related]
4. An essential role of N-terminal arginylation in cardiovascular development. Kwon YT; Kashina AS; Davydov IV; Hu RG; An JY; Seo JW; Du F; Varshavsky A Science; 2002 Jul; 297(5578):96-9. PubMed ID: 12098698 [TBL] [Abstract][Full Text] [Related]
5. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. Brower CS; Varshavsky A PLoS One; 2009 Nov; 4(11):e7757. PubMed ID: 19915679 [TBL] [Abstract][Full Text] [Related]
6. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis. Yoo YD; Mun SR; Ji CH; Sung KW; Kang KY; Heo AJ; Lee SH; An JY; Hwang J; Xie XQ; Ciechanover A; Kim BY; Kwon YT Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2716-E2724. PubMed ID: 29507222 [TBL] [Abstract][Full Text] [Related]
7. Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Oh JH; Hyun JY; Chen SJ; Varshavsky A Proc Natl Acad Sci U S A; 2020 May; 117(20):10778-10788. PubMed ID: 32366662 [TBL] [Abstract][Full Text] [Related]
8. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. Wadas B; Piatkov KI; Brower CS; Varshavsky A J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035 [TBL] [Abstract][Full Text] [Related]
9. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Rai R; Kashina A Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10123-8. PubMed ID: 16002466 [TBL] [Abstract][Full Text] [Related]
10. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202 [TBL] [Abstract][Full Text] [Related]
11. Ablation of Arg-tRNA-protein transferases results in defective neural tube development. Kim E; Kim S; Lee JH; Kwon YT; Lee MJ BMB Rep; 2016 Aug; 49(8):443-8. PubMed ID: 27345715 [TBL] [Abstract][Full Text] [Related]
12. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. Davydov IV; Varshavsky A J Biol Chem; 2000 Jul; 275(30):22931-41. PubMed ID: 10783390 [TBL] [Abstract][Full Text] [Related]
13. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. An JY; Seo JW; Tasaki T; Lee MJ; Varshavsky A; Kwon YT Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6212-7. PubMed ID: 16606826 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates. Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037 [TBL] [Abstract][Full Text] [Related]
15. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Tasaki T; Mulder LC; Iwamatsu A; Lee MJ; Davydov IV; Varshavsky A; Muesing M; Kwon YT Mol Cell Biol; 2005 Aug; 25(16):7120-36. PubMed ID: 16055722 [TBL] [Abstract][Full Text] [Related]
16. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. Liu YJ; Liu C; Chang Z; Wadas B; Brower CS; Song ZH; Xu ZL; Shang YL; Liu WX; Wang LN; Dong W; Varshavsky A; Hu RG; Li W J Biol Chem; 2016 Apr; 291(14):7426-38. PubMed ID: 26858254 [TBL] [Abstract][Full Text] [Related]
17. Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins. Lee PC; Sowa ME; Gygi SP; Harper JW Mol Cell; 2011 Aug; 43(3):392-405. PubMed ID: 21816346 [TBL] [Abstract][Full Text] [Related]
18. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway. Vu TTM; Varshavsky A Biochemistry; 2020 Aug; 59(30):2796-2812. PubMed ID: 32692156 [TBL] [Abstract][Full Text] [Related]
19. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Kwon YT; Kashina AS; Varshavsky A Mol Cell Biol; 1999 Jan; 19(1):182-93. PubMed ID: 9858543 [TBL] [Abstract][Full Text] [Related]
20. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]