These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantitative detection of cytokeratin 20 mRNA expression in bladder carcinoma by real-time reverse transcriptase-polymerase chain reaction. Christoph F; Müller M; Schostak M; Soong R; Tabiti K; Miller K Urology; 2004 Jul; 64(1):157-61. PubMed ID: 15245962 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of CDC91L1 (PIG-U) in bladder urothelial cell carcinoma: correlation with clinical variables and prognostic significance. Shen YJ; Ye DW; Yao XD; Trink B; Zhou XY; Zhang SL; Dai B; Zhang HL; Zhu Y; Guo Z; Wu G; Nagpal J BJU Int; 2008 Jan; 101(1):113-9. PubMed ID: 17941920 [TBL] [Abstract][Full Text] [Related]
4. Activation of RAS family genes in urothelial carcinoma. Boulalas I; Zaravinos A; Karyotis I; Delakas D; Spandidos DA J Urol; 2009 May; 181(5):2312-9. PubMed ID: 19303097 [TBL] [Abstract][Full Text] [Related]
5. Methylation patterns of Rb1 and Casp-8 promoters and their impact on their expression in bladder cancer. Malekzadeh K; Sobti RC; Nikbakht M; Shekari M; Hosseini SA; Tamandani DK; Singh SK Cancer Invest; 2009 Jan; 27(1):70-80. PubMed ID: 19160091 [TBL] [Abstract][Full Text] [Related]
6. CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer. Montie JE J Urol; 2005 Sep; 174(3):869-70. PubMed ID: 16093975 [No Abstract] [Full Text] [Related]
7. Urinary cytokeratin 20 mRNA expression has the potential to predict recurrence in superficial transitional cell carcinoma of the bladder. Christoph F; Weikert S; Wolff I; Schostak M; Tabiti K; Müller M; Miller K; Schrader M Cancer Lett; 2007 Jan; 245(1-2):121-6. PubMed ID: 16473461 [TBL] [Abstract][Full Text] [Related]
8. p63 gene expression study and early bladder carcinogenesis. Compérat E; Bièche I; Dargère D; Ferlicot S; Laurendeau I; Benoît G; Vieillefond A; Verret C; Vidaud M; Capron F; Bedossa P; Paradis V Urology; 2007 Sep; 70(3):459-62. PubMed ID: 17905096 [TBL] [Abstract][Full Text] [Related]
9. Editorial comment on: Large-scale real-time reverse transcription-PCR approach of angiogenic pathways in human transitional cell carcinoma of the bladder: identification of VEGFA as a major independent prognostic marker. Shariat SF Eur Urol; 2009 Oct; 56(4):688-9. PubMed ID: 18513852 [No Abstract] [Full Text] [Related]
10. Methyl-CpG-binding domain 2: a protective role in bladder carcinoma. Zhu Y; Spitz MR; Zhang H; Grossman HB; Frazier ML; Wu X Cancer; 2004 May; 100(9):1853-8. PubMed ID: 15112265 [TBL] [Abstract][Full Text] [Related]
11. Exon 2 methylation inhibits hepaCAM expression in transitional cell carcinoma of the bladder. Pan C; Wu X; Luo C; Yang S; Pu J; Wang C; Shen S Urol Int; 2010; 85(3):347-54. PubMed ID: 20628239 [TBL] [Abstract][Full Text] [Related]
12. Micro-array analysis of the effect of post-transurethral bladder tumor resection urine on transforming growth factor-beta1 dependent gene expression in transitional cell carcinoma. Zhang G; Cao Y; Xu Y; See WA Urol Oncol; 2005; 23(6):413-8. PubMed ID: 16301119 [TBL] [Abstract][Full Text] [Related]
13. Is quantitative real-time RT-PCR an adjunct to immunohistochemistry for the evaluation of ErbB2 status in transitional carcinoma of the bladder? Amsellem-Ouazana D; Bièche I; Molinié V; Elie C; Vieillefond A; Tozlu S; Botto H; Debré B; Lidereau R Eur Urol; 2006 Jun; 49(6):1035-42; discussion 1042-3. PubMed ID: 16466848 [TBL] [Abstract][Full Text] [Related]
14. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Caprodossi S; Lucciarini R; Amantini C; Nabissi M; Canesin G; Ballarini P; Di Spilimbergo A; Cardarelli MA; Servi L; Mammana G; Santoni G Eur Urol; 2008 Sep; 54(3):612-20. PubMed ID: 17977643 [TBL] [Abstract][Full Text] [Related]
16. Commentary on genetic prognostic markers for transitional cell carcinoma of the bladder: from microscopes to molecules. Theodorescu D J Urol; 1996 Jan; 155(1):2. PubMed ID: 7490833 [No Abstract] [Full Text] [Related]
17. Analysis of hTERT expression in exfoliated cells from patients with bladder transitional cell carcinomas using SYBR green real-time fluorescence quantitative PCR. Xie XY; Yang X; Zhang JH; Liu ZJ Ann Clin Biochem; 2007 Nov; 44(Pt 6):523-8. PubMed ID: 17961306 [TBL] [Abstract][Full Text] [Related]
18. Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladder. Holyoake A; O'Sullivan P; Pollock R; Best T; Watanabe J; Kajita Y; Matsui Y; Ito M; Nishiyama H; Kerr N; da Silva Tatley F; Cambridge L; Toro T; Ogawa O; Guilford P Clin Cancer Res; 2008 Feb; 14(3):742-9. PubMed ID: 18245534 [TBL] [Abstract][Full Text] [Related]
19. Use of polymerase chain reaction analysis of urinary DNA to detect bladder carcinoma. Little B; Hughes A; Young MR; O'Brien A Urol Oncol; 2005; 23(2):102-7. PubMed ID: 15869994 [TBL] [Abstract][Full Text] [Related]
20. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Higgins JP; Kaygusuz G; Wang L; Montgomery K; Mason V; Zhu SX; Marinelli RJ; Presti JC; van de Rijn M; Brooks JD Am J Surg Pathol; 2007 May; 31(5):673-80. PubMed ID: 17460449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]