These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16217652)

  • 1. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor.
    Willaert R; De Vuyst L
    Appl Microbiol Biotechnol; 2006 Jun; 71(2):155-63. PubMed ID: 16217652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Production of L(+)-tartaric acid by immobilized Corynebacterium sp. JZ-1].
    Zhang JG; Qian YJ
    Sheng Wu Gong Cheng Xue Bao; 2000 Mar; 16(2):188-92. PubMed ID: 10976324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Escherichia coli cells with cis-epoxysuccinate hydrolase activity for D(-)-tartaric acid production.
    Pan H; Bao W; Xie Z; Zhang J; Li Y
    Biotechnol Lett; 2010 Feb; 32(2):235-41. PubMed ID: 19844664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the production efficiency of L-(+)-tartaric acid by heterogeneous whole-cell bioconversion.
    Wang Z; Wang Y; Shi H; Su Z
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3989-4001. PubMed ID: 24599671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the improvement of process technology of L(+)-tartaric acid fermentation].
    Yang Y; Li WP; Lu LS; Lu HS
    Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):345-8. PubMed ID: 11517617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of tartaric acid using immobilized recominant cis-epoxysuccinate hydrolase.
    Wang Z; Su M; Li Y; Wang Y; Su Z
    Biotechnol Lett; 2017 Dec; 39(12):1859-1863. PubMed ID: 28875343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound-assisted d-tartaric acid whole-cell bioconversion by recombinant Escherichia coli.
    Dong W; Zhao F; Xin F; He A; Zhang Y; Wu H; Fang Y; Zhang W; Ma J; Jiang M
    Ultrason Sonochem; 2018 Apr; 42():11-17. PubMed ID: 29429650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a novel cis-epoxysuccinate hydrolase from Klebsiella sp. that produces L(+)-tartaric acid.
    Cheng Y; Wang L; Pan H; Bao W; Sun W; Xie Z; Zhang J; Zhao Y
    Biotechnol Lett; 2014 Nov; 36(11):2325-30. PubMed ID: 25048238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of the stable strain Labrys sp. BK-8 for L(+)-tartaric acid production.
    Bao W; Pan H; Zhang Z; Cheng Y; Xie Z; Zhang J
    J Biosci Bioeng; 2015 May; 119(5):538-42. PubMed ID: 25468422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34.
    Raj J; Seth A; Prasad S; Bhalla TC
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):535-9. PubMed ID: 17216468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469.
    Kolomytseva MP; Randazzo D; Baskunov BP; Scozzafava A; Briganti F; Golovleva LA
    Bioresour Technol; 2009 Jan; 100(2):839-44. PubMed ID: 18723343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology.
    Li X; Xu T; Ma X; Guo K; Kai L; Zhao Y; Jia X; Ma Y
    Bioresour Technol; 2008 Sep; 99(13):5391-6. PubMed ID: 18083551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor.
    Lim SJ; Kim BJ; Jeong CM; Choi JD; Ahn YH; Chang HN
    Bioresour Technol; 2008 Nov; 99(16):7866-74. PubMed ID: 18502638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor.
    Kwon SG; Park SW; Oh DK
    J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of post-digestion temperature on serial CSTR biogas reactor performance.
    Boe K; Karakashev D; Trably E; Angelidaki I
    Water Res; 2009 Feb; 43(3):669-76. PubMed ID: 19084254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and production of recombinant cis-epoxysuccinate hydrolase in Escherichia coli under the control of temperature-dependent promoter.
    Wang Z; Wang Y; Shi H; Su Z
    J Biotechnol; 2012 Dec; 162(2-3):232-6. PubMed ID: 23026553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous desulfurization of dibenzothiophene with Rhodococcusrhodochrous IGTS8 (ATCC 53968).
    Schilling BM; Alvarez LM; Wang DI; Cooney CL
    Biotechnol Prog; 2002; 18(6):1207-13. PubMed ID: 12467453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
    Knoll A; Bartsch S; Husemann B; Engel P; Schroer K; Ribeiro B; Stöckmann C; Seletzky J; Büchs J
    J Biotechnol; 2007 Oct; 132(2):167-79. PubMed ID: 17681630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae.
    Liu F; Fang B
    Biotechnol J; 2007 Mar; 2(3):374-80. PubMed ID: 17260330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor.
    Jung KH; Bang SH; Oh TK; Park HJ
    Biotechnol Lett; 2011 Aug; 33(8):1621-4. PubMed ID: 21479630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.