These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16217737)

  • 1. Inner ear formation during the early larval development of Xenopus laevis.
    Quick QA; Serrano EE
    Dev Dyn; 2005 Nov; 234(3):791-801. PubMed ID: 16217737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses.
    Kil SH; Collazo A
    Dev Biol; 2001 May; 233(2):365-79. PubMed ID: 11336501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear.
    Quick QA; Serrano EE
    Int J Dev Biol; 2007; 51(3):201-9. PubMed ID: 17486540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genes expressed in the Xenopus inner ear.
    Serrano EE; Trujillo-Provencio C; Sultemeier DR; Bullock WM; Quick QA
    Cell Mol Biol (Noisy-le-grand); 2001 Nov; 47(7):1229-39. PubMed ID: 11838972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus.
    Wanner SJ; Miller JR
    J Cell Sci; 2007 Aug; 120(Pt 15):2641-51. PubMed ID: 17635997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development.
    Díaz ME; Varela-Ramírez A; Serrano EE
    Hear Res; 1995 Nov; 91(1-2):33-42. PubMed ID: 8647723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and development of vestibular hair cells in the larval bullfrog.
    Li CW; Lewis ER
    Ann Otol Rhinol Laryngol; 1979; 88(3 Pt 1):427-37. PubMed ID: 313736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional morphology of inner ear development in Xenopus laevis.
    Bever MM; Jean YY; Fekete DM
    Dev Dyn; 2003 Jul; 227(3):422-30. PubMed ID: 12815629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Paraxial Protocadherin in Xenopus otic placode development.
    Hu RY; Xu P; Chen YL; Lou X; Ding X
    Biochem Biophys Res Commun; 2006 Jun; 345(1):239-47. PubMed ID: 16678122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Islet-1 expression in the developing chicken inner ear.
    Li H; Liu H; Sage C; Huang M; Chen ZY; Heller S
    J Comp Neurol; 2004 Sep; 477(1):1-10. PubMed ID: 15281076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis.
    Hellmann B; Fritzsch B
    Brain Behav Evol; 1996; 47(4):185-94. PubMed ID: 9156781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei).
    Lombarte A; Popper AN
    J Comp Neurol; 1994 Jul; 345(3):419-28. PubMed ID: 7929910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EYA1 expression in the developing inner ear.
    Bane BC; Van Rybroek JM; Kolker SJ; Weeks DL; Manaligod JM
    Ann Otol Rhinol Laryngol; 2005 Nov; 114(11):853-8. PubMed ID: 16358604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic Analysis Identifies Candidate Genes for Differential Expression during
    Virk SM; Trujillo-Provencio C; Serrano EE
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Xenopus laevis inner ear transcriptome for biological function.
    Powers TR; Virk SM; Trujillo-Provencio C; Serrano EE
    BMC Genomics; 2012 Jun; 13():225. PubMed ID: 22676585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA isolation from Xenopus inner ear sensory endorgans for transcriptional profiling and molecular cloning.
    Trujillo-Provencio C; Powers TR; Sultemeier DR; Serrano EE
    Methods Mol Biol; 2009; 493():3-20. PubMed ID: 18839338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance.
    Ramírez-Gordillo D; Powers TR; van Velkinburgh JC; Trujillo-Provencio C; Schilkey F; Serrano EE
    BMC Res Notes; 2015 Nov; 8():691. PubMed ID: 26582541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA gene expression in the mouse inner ear.
    Weston MD; Pierce ML; Rocha-Sanchez S; Beisel KW; Soukup GA
    Brain Res; 2006 Sep; 1111(1):95-104. PubMed ID: 16904081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis.
    Nichols DH; Pauley S; Jahan I; Beisel KW; Millen KJ; Fritzsch B
    Cell Tissue Res; 2008 Dec; 334(3):339-58. PubMed ID: 18985389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course.
    Baxendale S; Whitfield TT
    Methods Cell Biol; 2016; 134():165-209. PubMed ID: 27312494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.