These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 1621818)

  • 1. Endothelium modulates renal blood flow but not autoregulation.
    Beierwaltes WH; Sigmon DH; Carretero OA
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs.
    Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation.
    Hoffend J; Cavarape A; Endlich K; Steinhausen M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal versus femoral hemodynamic response to endothelium-derived relaxing factor synthesis inhibition.
    Sigmon DH; Carretero OA; Beierwaltes WH
    J Vasc Res; 1993; 30(4):218-23. PubMed ID: 8357952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide, atrial natriuretic factor, and dynamic renal autoregulation.
    Wang X; Salevsky FC; Cupples WA
    Can J Physiol Pharmacol; 1999 Oct; 77(10):777-86. PubMed ID: 10588482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ca(2+) channel activity on renal hemodynamics during acute attenuation of NO synthesis in the rat.
    Kramp RA; Fourmanoir P; Ladrière L; Joly E; Gerbaux C; El Hajjam A; Caron N
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F561-9. PubMed ID: 10751216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet.
    Solhaug MJ; Wallace MR; Granger JP
    Pediatr Res; 1993 Dec; 34(6):750-4. PubMed ID: 8108187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide.
    Turkstra E; Braam B; Koomans HA
    J Am Soc Nephrol; 2000 May; 11(5):847-855. PubMed ID: 10770962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat.
    Racasan S; Joles JA; Boer P; Koomans HA; Braam B
    Am J Physiol Renal Physiol; 2003 Jul; 285(1):F105-12. PubMed ID: 12631552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma renin activity and the renal response to nitric oxide synthesis inhibition.
    Sigmon DH; Carretero OA; Beierwaltes WH
    J Am Soc Nephrol; 1992 Dec; 3(6):1288-94. PubMed ID: 1477324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of nitric oxide in the chronic phase of two-kidney, one clip renovascular hypertension.
    Sigmon DH; Beierwaltes WH
    Hypertension; 1998 Feb; 31(2):649-56. PubMed ID: 9461236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-derived relaxing factor regulates renin release in vivo.
    Sigmon DH; Carretero OA; Beierwaltes WH
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F256-61. PubMed ID: 1510122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat.
    Kramp R; Fourmanoir P; Caron N
    Am J Physiol Renal Physiol; 2001 Dec; 281(6):F1132-40. PubMed ID: 11704565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants.
    Koeners MP; Racasan S; Koomans HA; Joles JA; Braam B
    Acta Physiol (Oxf); 2007 Aug; 190(4):329-38. PubMed ID: 17394565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of L-NG-nitro-arginine, inhibitor of nitric oxide synthesis, on autoregulation of renal blood flow in dogs.
    Kiyomoto H; Matsuo H; Tamaki T; Aki Y; Hong H; Iwao H; Abe Y
    Jpn J Pharmacol; 1992 Feb; 58(2):147-55. PubMed ID: 1507520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal vascular and tubular actions of calcitonin gene-related peptide: effect of NG-nitro-L-arginine methyl ester.
    Elhawary AM; Pang CC
    J Pharmacol Exp Ther; 1995 Apr; 273(1):56-63. PubMed ID: 7714812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support of renal blood flow after ischaemic-reperfusion injury by endogenous formation of nitric oxide and of cyclo-oxygenase vasodilator metabolites.
    Cristol JP; Thiemermann C; Mitchell JA; Walder C; Vane JR
    Br J Pharmacol; 1993 May; 109(1):188-94. PubMed ID: 7684301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats.
    Conger J; Robinette J; Villar A; Raij L; Shultz P
    J Clin Invest; 1995 Jul; 96(1):631-8. PubMed ID: 7542287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.