These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 16218654)
21. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize. Janni J; Weinstock BA; Hagen L; Wright S Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901 [TBL] [Abstract][Full Text] [Related]
22. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings. Arias SL; Mary VS; Otaiza SN; Wunderlin DA; Rubinstein HR; Theumer MG Phytochemistry; 2016 May; 125():54-64. PubMed ID: 26903312 [TBL] [Abstract][Full Text] [Related]
23. Influence of kernel age on fumonisin B1 production in maize by Fusarium moniliforme. Warfield CY; Gilchrist DG Appl Environ Microbiol; 1999 Jul; 65(7):2853-6. PubMed ID: 10388675 [TBL] [Abstract][Full Text] [Related]
24. [Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy]. Wei LM; Jiang HY; Li JH; Yan YL; Dai JR Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1404-7. PubMed ID: 16379276 [TBL] [Abstract][Full Text] [Related]
25. Infection and Fumonisin Production by Fusarium verticillioides in Developing Maize Kernels. Bush BJ; Carson ML; Cubeta MA; Hagler WM; Payne GA Phytopathology; 2004 Jan; 94(1):88-93. PubMed ID: 18943824 [TBL] [Abstract][Full Text] [Related]
26. Mould incidence and mycotoxin contamination in maize kernels from Swat Valley, North West Frontier Province of Pakistan. Shah HU; Simpson TJ; Alam S; Khattak KF; Perveen S Food Chem Toxicol; 2010 Apr; 48(4):1111-6. PubMed ID: 20138951 [TBL] [Abstract][Full Text] [Related]
27. Effects of gamma radiation on maize samples contaminated with Fusarium verticillioides. Ferreira-Castro FL; Aquino S; Greiner R; Ribeiro DH; Reis TA; Corrêa B Appl Radiat Isot; 2007 Aug; 65(8):927-33. PubMed ID: 17537639 [TBL] [Abstract][Full Text] [Related]
28. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
29. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Glenn AE; Zitomer NC; Zimeri AM; Williams LD; Riley RT; Proctor RH Mol Plant Microbe Interact; 2008 Jan; 21(1):87-97. PubMed ID: 18052886 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of fumonisin B₁ formation in maize ears inoculated with Fusarium verticillioides. Waskiewicz A; Wit M; Golinski P; Chelkowski J; Warzecha R; Ochodzki P; Wakulinski W Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(11):1752-61. PubMed ID: 22916862 [TBL] [Abstract][Full Text] [Related]
31. Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize. Garcia D; Ramos AJ; Sanchis V; Marín S J Sci Food Agric; 2013 Jul; 93(9):2248-53. PubMed ID: 23355286 [TBL] [Abstract][Full Text] [Related]
32. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Jurado M; Vázquez C; Marín S; Sanchis V; Teresa González-Jaén M Syst Appl Microbiol; 2006 Dec; 29(8):681-9. PubMed ID: 16513314 [TBL] [Abstract][Full Text] [Related]
33. Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Kos G; Lohninger H; Mizaikoff B; Krska R Food Addit Contam; 2007 Jul; 24(7):721-9. PubMed ID: 17613057 [TBL] [Abstract][Full Text] [Related]
34. The influence of fusarium ear infection on the maize yield and quality (Transylvania-Romania). Nagy E; Voichiţa H; Kadar R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1147-50. PubMed ID: 17390871 [TBL] [Abstract][Full Text] [Related]
35. Mycoflora and multimycotoxin detection in corn silage: experimental study. Garon D; Richard E; Sage L; Bouchart V; Pottier D; Lebailly P J Agric Food Chem; 2006 May; 54(9):3479-84. PubMed ID: 16637710 [TBL] [Abstract][Full Text] [Related]
36. Logistic regression modeling of cropping systems to predict fumonisin contamination in maize. Battilani P; Pietri A; Barbano C; Scandolara A; Bertuzzi T; Marocco A J Agric Food Chem; 2008 Nov; 56(21):10433-8. PubMed ID: 18841987 [TBL] [Abstract][Full Text] [Related]
37. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels. Ludovici M; Ialongo C; Reverberi M; Beccaccioli M; Scarpari M; Scala V Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(12):2026-33. PubMed ID: 25255035 [TBL] [Abstract][Full Text] [Related]
38. Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Schaafsma AW; Hooker DC Int J Food Microbiol; 2007 Oct; 119(1-2):116-25. PubMed ID: 17900733 [TBL] [Abstract][Full Text] [Related]
39. LC-MS/MS method for the determination of the fungal pigment bikaverin in maize kernels as an indicator of ear rot. Busman M; Butchko RA; Proctor RH Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(11):1736-42. PubMed ID: 22845490 [TBL] [Abstract][Full Text] [Related]
40. Near-infrared reflectance models for the rapid prediction of quality of brewing raw materials. Marte L; Belloni P; Genorini E; Sileoni V; Perretti G; Montanari L; Marconi O J Agric Food Chem; 2009 Jan; 57(2):326-33. PubMed ID: 19099457 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]