These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16218744)

  • 21. Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si.
    Ruffino F; Pugliara A; Carria E; Romano L; Bongiorno C; Spinella C; Grimaldi MG
    Nanotechnology; 2012 Feb; 23(4):045601. PubMed ID: 22214877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.
    Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J
    Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic-Scale Observation of Bimetallic Au-CuO
    Luo J; Liu Y; Zhang L; Ren Y; Miao S; Zhang B; Su DS; Liang C
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35468-35478. PubMed ID: 31483599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of biocompatible Au-ZnTe core-shell nanoparticles.
    Dunpall R; Lewis EA; Haigh SJ; O'Brien P; Revaprasadu N
    J Mater Chem B; 2015 Apr; 3(14):2826-2833. PubMed ID: 32262411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
    Wang H; Chen L; Feng Y; Chen H
    Acc Chem Res; 2013 Jul; 46(7):1636-46. PubMed ID: 23614692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon.
    Liu L; Chao Y; Cao W; Wang Y; Luo C; Pang X; Fan D; Wei Q
    Anal Chim Acta; 2014 Oct; 847():29-36. PubMed ID: 25261897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monodispersed core-shell Fe3O4@Au nanoparticles.
    Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ
    J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures.
    Jungjohann KL; Bliznakov S; Sutter PW; Stach EA; Sutter EA
    Nano Lett; 2013 Jun; 13(6):2964-70. PubMed ID: 23721080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes.
    Zhang B; Li JF; Zhong QL; Ren B; Tian ZQ; Zou SZ
    Langmuir; 2005 Aug; 21(16):7449-55. PubMed ID: 16042478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Templated Assembly of Au
    Dai C; Yu Y; Xu S; Li M; Zhang SX
    Chem Asian J; 2019 Sep; 14(18):3149-3153. PubMed ID: 31407853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle metamorphosis: an in situ high-temperature transmission electron microscopy study of the structural evolution of heterogeneous Au:Fe2O3 nanoparticles.
    Baumgardner WJ; Yu Y; Hovden R; Honrao S; Hennig RG; Abruña HD; Muller D; Hanrath T
    ACS Nano; 2014 May; 8(5):5315-22. PubMed ID: 24758698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon.
    Foster DM; Pavloudis T; Kioseoglou J; Palmer RE
    Nat Commun; 2019 Jun; 10(1):2583. PubMed ID: 31197150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic surface nanostructuring of Au-dots@SiO
    Yu R; Shibayama T; Ishioka J; Meng X; Lei Y; Watanabe S
    Nanotechnology; 2017 Jul; 28(27):275701. PubMed ID: 28541250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly.
    Sun X; Li Y
    Langmuir; 2005 Jun; 21(13):6019-24. PubMed ID: 15952855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Total Aqueous Synthesis of Au@Cu
    Lv Q; Min H; Duan DB; Fang W; Pan GM; Shen AG; Wang QQ; Nie G; Hu JM
    Adv Healthc Mater; 2019 Jan; 8(2):e1801257. PubMed ID: 30548216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Au and Ag/Au double-shells hollow nanoparticles with improved near infrared surface plasmon and photoluminescence properties.
    Ghosh Chaudhuri R; Paria S
    J Colloid Interface Sci; 2016 Jan; 461():15-19. PubMed ID: 26397903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.