BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16218965)

  • 1. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon.
    Takahara K; Akashi K; Yokota A
    FEBS J; 2005 Oct; 272(20):5353-64. PubMed ID: 16218965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions.
    Nanasato Y; Akashi K; Yokota A
    Plant Cell Physiol; 2005 Sep; 46(9):1515-24. PubMed ID: 16020428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon.
    Akashi K; Nishimura N; Ishida Y; Yokota A
    Biochem Biophys Res Commun; 2004 Oct; 323(1):72-8. PubMed ID: 15351703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits.
    Kawasaki S; Miyake C; Kohchi T; Fujii S; Uchida M; Yokota A
    Plant Cell Physiol; 2000 Jul; 41(7):864-73. PubMed ID: 10965943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon.
    Yokota A; Kawasaki S; Iwano M; Nakamura C; Miyake C; Akashi K
    Ann Bot; 2002 Jun; 89 Spec No(7):825-32. PubMed ID: 12102508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and biochemical characterisation of a serine acetyltransferase of onion, Allium cepa (L.).
    McManus MT; Leung S; Lambert A; Scott RW; Pither-Joyce M; Chen B; McCallum J
    Phytochemistry; 2005 Jun; 66(12):1407-16. PubMed ID: 15949827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematized biosynthesis and catabolism regulate citrulline accumulation in watermelon.
    Joshi V; Joshi M; Silwal D; Noonan K; Rodriguez S; Penalosa A
    Phytochemistry; 2019 Jun; 162():129-140. PubMed ID: 30884257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon.
    Sanda S; Yoshida K; Kuwano M; Kawamura T; Munekage YN; Akashi K; Yokota A
    Physiol Plant; 2011 Jul; 142(3):247-64. PubMed ID: 21438881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species.
    Gnanasambandam A; Polkinghorne IG; Birch RG
    Plant Biotechnol J; 2007 Mar; 5(2):290-6. PubMed ID: 17309684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Watermelon (Citrullus lanatus) hydroperoxide lyase greatly increases C6 aldehyde formation in transgenic leaves.
    Fukushige H; Hildebrand DF
    J Agric Food Chem; 2005 Mar; 53(6):2046-51. PubMed ID: 15769134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice peptide deformylase PDF1B is crucial for development of chloroplasts.
    Moon S; Giglione C; Lee DY; An S; Jeong DH; Meinnel T; An G
    Plant Cell Physiol; 2008 Oct; 49(10):1536-46. PubMed ID: 18718933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger.
    Akashi K; Miyake C; Yokota A
    FEBS Lett; 2001 Nov; 508(3):438-42. PubMed ID: 11728468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves.
    Roy S; Sadhana P; Begum M; Kumar S; Lodha ML; Kapoor HC
    Phytochemistry; 2006 Sep; 67(17):1865-73. PubMed ID: 16859721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase.
    Bayer A; Ma X; Stöckigt J
    Bioorg Med Chem; 2004 May; 12(10):2787-95. PubMed ID: 15110860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect allantoinase: cDNA cloning, purification, and characterization of the native protein from the cat flea, Ctenocephalides felis.
    Gaines PJ; Tang L; Wisnewski N
    Insect Biochem Mol Biol; 2004 Mar; 34(3):203-14. PubMed ID: 14871617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase.
    Wickramasinghe S; Uda K; Nagataki M; Yatawara L; Rajapakse RP; Watanabe Y; Suzuki T; Agatsuma T
    Exp Parasitol; 2007 Oct; 117(2):124-32. PubMed ID: 17574244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid localization of the PEND protein is mediated by a noncanonical transit peptide.
    Terasawa K; Sato N
    FEBS J; 2009 Mar; 276(6):1709-19. PubMed ID: 19220850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes.
    Curbo S; Lagier-Tourenne C; Carrozzo R; Palenzuela L; Lucioli S; Hirano M; Santorelli F; Arenas J; Karlsson A; Johansson M
    Genomics; 2006 Mar; 87(3):410-6. PubMed ID: 16300924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.