These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 16219061)

  • 1. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Polaschegg HD
    Hemodial Int; 2006 Apr; 10(2):215-6; author reply 216. PubMed ID: 16623678
    [No Abstract]   [Full Text] [Related]  

  • 3. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusive clearance of small and middle-sized molecules in combined dialyzer flow configurations.
    Eloot S; De Vos JY; Hombrouckx R; Verdonck P
    Int J Artif Organs; 2004 Mar; 27(3):205-13. PubMed ID: 15112886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers.
    Mandolfo S; Malberti F; Imbasciati E; Cogliati P; Gauly A
    Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in mass transfer-area coefficients and urea Kt/V with increasing dialysate flow rate are greater for high-flux dialyzers.
    Leypoldt JK; Cheung AK
    Am J Kidney Dis; 2001 Sep; 38(3):575-9. PubMed ID: 11532691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new synthetic dialyzer with advanced permselectivity for enhanced low-molecular weight protein removal.
    Krieter DH; Lemke HD; Wanner C
    Artif Organs; 2008 Jul; 32(7):547-54. PubMed ID: 18638309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of standard high-flux polysulfone versus novel high-flux polysulfone dialysis membranes on inflammatory markers: a randomized, single-blinded, controlled clinical trial.
    Kerr PG; Sutherland WH; de Jong S; Vaithalingham I; Williams SM; Walker RJ
    Am J Kidney Dis; 2007 Apr; 49(4):533-9. PubMed ID: 17386321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers.
    Ouseph R; Hutchison CA; Ward RA
    Nephrol Dial Transplant; 2008 May; 23(5):1704-12. PubMed ID: 18156455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of intact parathyroid hormone adsorption by different dialysis membranes during hemodialysis.
    Balducci A; Coen G; Manni M; Perruzza I; Fassino V; Sardella D; Grandi F
    Artif Organs; 2004 Dec; 28(12):1067-75. PubMed ID: 15554934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of urea clearance in low-efficiency low-flux vs. high-efficiency high-flux dialyzer membrane with reduced blood and dialysate flow: an in vitro analysis.
    Munshi R; Ahmad S
    Hemodial Int; 2014 Jan; 18(1):172-4. PubMed ID: 23714225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantifying dialysis efficiency for middle molecules in haemodialysis and in convective and mixed techniques].
    Casino FG; Lopez T
    G Ital Nefrol; 2008; 25(1):66-75. PubMed ID: 18264920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.