These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16219502)

  • 1. The passivation of pyrrhotite by surface coating.
    Cai MF; Dang Z; Chen YW; Belzile N
    Chemosphere; 2005 Nov; 61(5):659-67. PubMed ID: 16219502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silane-based coatings on the pyrite for remediation of acid mine drainage.
    Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R
    Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y; Suzuki I
    Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of arsenopyrite surface oxidation by sol-gel coatings.
    Khummalai N; Boonamnuayvitaya V
    J Biosci Bioeng; 2005 Mar; 99(3):277-84. PubMed ID: 16233789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y; Suzuki I
    FEMS Microbiol Lett; 2004 Aug; 237(1):139-45. PubMed ID: 15268949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial oxidation of ferrous iron at low temperatures.
    Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial thiosulphate reaction arrays: the interactive roles of Fe(III), O2 and microbial strain on disproportionation and oxidation pathways.
    Warren LA; Norlund KL; Bernier L
    Geobiology; 2008 Dec; 6(5):461-70. PubMed ID: 19076637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential.
    Al-Abed SR; Jegadeesan G; Purandare J; Allen D
    Chemosphere; 2007 Jan; 66(4):775-82. PubMed ID: 16949129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.
    Wang H; Gong L; Cravotta CA; Yang X; Tuovinen OH; Dong H; Fu X
    J Hazard Mater; 2013 Jan; 244-245():718-25. PubMed ID: 23183347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of scrap iron metal value using biogenerated ferric iron.
    Ballor NR; Nesbitt CC; Lueking DR
    Biotechnol Bioeng; 2006 Apr; 93(6):1089-94. PubMed ID: 16440341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treating waste with waste: Lignin acting as both an effective bactericide and passivator to prevent acid mine drainage formation at the source.
    Gao B; Han Z; Cheng H; Zhou H; Wang Y; Chen Z
    Sci Total Environ; 2024 Jun; 927():172162. PubMed ID: 38569954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity evaluation of complex metal mixtures using reduced metal concentrations: application to iron oxidation by Acidithiobacillus ferrooxidans.
    Cho KS; Ryu HW; Choi HM
    J Microbiol Biotechnol; 2008 Jul; 18(7):1298-307. PubMed ID: 18667860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R
    Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage.
    Mayer KU; Benner SG; Blowes DW
    J Contam Hydrol; 2006 May; 85(3-4):195-211. PubMed ID: 16554107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.