These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1621961)

  • 1. Deuterium exchange on micrograms of proteins by attenuated total reflection Fourier transform infrared spectroscopy on silver halide fiber.
    Chiacchiera SM; Kosower EM
    Anal Biochem; 1992 Feb; 201(1):43-7. PubMed ID: 1621961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures.
    Prestrelski SJ; Byler DM; Liebman MN
    Biochemistry; 1991 Jan; 30(1):133-43. PubMed ID: 1988014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy for the Quantitative Analysis of Deuterium in Plasma: Application to Total Body Water Determination in Humans and Other Animals.
    Ward LC
    Appl Spectrosc; 2021 Jun; 75(6):698-705. PubMed ID: 33635101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared spectra of aqueous protein mixtures using a novel attenuated total internal reflectance cell with infrared fibers.
    Simhony S; Kosower EM; Katzir A
    Biochem Biophys Res Commun; 1987 Feb; 142(3):1059-63. PubMed ID: 3827893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin.
    Pershina L; Hvidt A
    Eur J Biochem; 1974 Oct; 48(2):339-44. PubMed ID: 4475635
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.
    Damin CA; Sommer AJ
    Appl Spectrosc; 2013 Nov; 67(11):1252-63. PubMed ID: 24160876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S.
    Haris PI; Lee DC; Chapman D
    Biochim Biophys Acta; 1986 Dec; 874(3):255-65. PubMed ID: 3790572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-deuterium exchange in membrane proteins monitored by IR spectroscopy: a new tool to resolve protein structure and dynamics.
    Vigano C; Smeyers M; Raussens V; Scheirlinckx F; Ruysschaert JM; Goormaghtigh E
    Biopolymers; 2004 May-Jun 5; 74(1-2):19-26. PubMed ID: 15137087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.
    Zeeshan F; Tabbassum M; Jorgensen L; Medlicott NJ
    Appl Spectrosc; 2018 Feb; 72(2):268-279. PubMed ID: 29022355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange.
    Dong A; Hyslop RM; Pringle DL
    Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal.
    Ghalla H; Rekik N; Michta A; Oujia B; Flakus HT
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jan; 75(1):37-47. PubMed ID: 19884041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared studies of ribonuclease in H2O and 2H2O solutions.
    Olinger JM; Hill DM; Jakobsen RJ; Brody RS
    Biochim Biophys Acta; 1986 Jan; 869(1):89-98. PubMed ID: 3942753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared techniques for quantifying protein structural stability.
    Vrettos JS; Meuse CW
    Anal Biochem; 2009 Jul; 390(1):14-20. PubMed ID: 19327337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra.
    Susi H; Byler DM
    Biochem Biophys Res Commun; 1983 Aug; 115(1):391-7. PubMed ID: 6615537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study.
    Fabian H; Naumann D; Misselwitz R; Ristau O; Gerlach D; Welfle H
    Biochemistry; 1992 Jul; 31(28):6532-8. PubMed ID: 1633164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structure and conformational dynamics of tumor necrosis factor-alpha and a (Cys69----Asp; Cys101----Arg) analog as examined by IR spectroscopy and hydrogen exchange.
    Prestrelski SJ; Arakawa T
    Protein Eng; 1991 Oct; 4(7):739-43. PubMed ID: 1798698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assignment of the histidine proton magnetic resonance peaks of soybean trypsin inhibitor (Kunitz) by a differertial deuterium exchange technique.
    Markley JL; Kato I
    Biochemistry; 1975 Jul; 14(14):3234-7. PubMed ID: 238587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange.
    Earnest TN; Herzfeld J; Rothschild KJ
    Biophys J; 1990 Dec; 58(6):1539-46. PubMed ID: 2275968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-temperature Fourier transform near-infrared imaging spectroscopy of the deuterium/hydrogen exchange in liquid D₂O.
    Unger M; Ozaki Y; Siesler HW
    Appl Spectrosc; 2014; 68(5):603-7. PubMed ID: 25014605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure of soybean trypsin inhibitor (Kunitz): a study by infrared spectroscopy.
    Ventura MM
    An Acad Bras Cienc; 1989; 61(3):373-7. PubMed ID: 2635840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.