These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 16219787)
1. DNA polymerase 4 of Saccharomyces cerevisiae is important for accurate repair of methyl-methanesulfonate-induced DNA damage. Sterling CH; Sweasy JB Genetics; 2006 Jan; 172(1):89-98. PubMed ID: 16219787 [TBL] [Abstract][Full Text] [Related]
2. Epistatic analysis of the roles of the RAD27 and POL4 gene products in DNA base excision repair in S. cerevisiae. McInnis M; O'Neill G; Fossum K; Reagan MS DNA Repair (Amst); 2002 Apr; 1(4):311-5. PubMed ID: 12509249 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the RE V3 gene in the methylated base-excision repair system. Co-operation of two DNA polymerases, delta and Rev3p, in the repair of MMS-induced lesions in the DNA of Saccharomyces cerevisiae. Halas A; Baranowska H; Policińska Z; Jachymczyk WJ Curr Genet; 1997 Apr; 31(4):292-301. PubMed ID: 9108136 [TBL] [Abstract][Full Text] [Related]
4. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair. Leem SH; Ropp PA; Sugino A Nucleic Acids Res; 1994 Aug; 22(15):3011-7. PubMed ID: 8065914 [TBL] [Abstract][Full Text] [Related]
5. Evidence that base stacking potential in annealed 3' overhangs determines polymerase utilization in yeast nonhomologous end joining. Daley JM; Wilson TE DNA Repair (Amst); 2008 Jan; 7(1):67-76. PubMed ID: 17881298 [TBL] [Abstract][Full Text] [Related]
6. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Huang D; Piening BD; Paulovich AG Mol Cell Biol; 2013 Apr; 33(8):1515-27. PubMed ID: 23382077 [TBL] [Abstract][Full Text] [Related]
7. Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in saccharomyces cerevisiae. Fan Q; Xu X; Zhao X; Wang Q; Xiao W; Guo Y; Fu YV Curr Genet; 2018 Aug; 64(4):889-899. PubMed ID: 29396601 [TBL] [Abstract][Full Text] [Related]
8. Mismatch tolerance by DNA polymerase Pol4 in the course of nonhomologous end joining in Saccharomyces cerevisiae. Pardo B; Ma E; Marcand S Genetics; 2006 Apr; 172(4):2689-94. PubMed ID: 16452137 [TBL] [Abstract][Full Text] [Related]
9. Effects of HDF1 (Ku70) and HDF2 (Ku80) on spontaneous and DNA damage-induced intrachromosomal recombination in Saccharomyces cerevisiae. Cervelli T; Galli A Mol Gen Genet; 2000 Sep; 264(1-2):56-63. PubMed ID: 11016833 [TBL] [Abstract][Full Text] [Related]
10. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Galli A; Chan CY; Parfenova L; Cervelli T; Schiestl RH Mutagenesis; 2015 Nov; 30(6):841-9. PubMed ID: 26122113 [TBL] [Abstract][Full Text] [Related]
11. The ability of Sgs1 to interact with DNA topoisomerase III is essential for damage-induced recombination. Ui A; Seki M; Ogiwara H; Onodera R; Fukushige S; Onoda F; Enomoto T DNA Repair (Amst); 2005 Feb; 4(2):191-201. PubMed ID: 15590327 [TBL] [Abstract][Full Text] [Related]
12. DNA joint dependence of pol X family polymerase action in nonhomologous end joining. Daley JM; Laan RL; Suresh A; Wilson TE J Biol Chem; 2005 Aug; 280(32):29030-7. PubMed ID: 15964833 [TBL] [Abstract][Full Text] [Related]
13. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants. Stumpf JD; Copeland WC PLoS Genet; 2014 Oct; 10(10):e1004748. PubMed ID: 25340760 [TBL] [Abstract][Full Text] [Related]
14. Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. Choudhury SA; Asefa B; Webb A; Ramotar D; Chow TY Mol Cell Biochem; 2007 Jun; 300(1-2):215-26. PubMed ID: 17205207 [TBL] [Abstract][Full Text] [Related]
15. Telomere-related functions of yeast KU in the repair of bleomycin-induced DNA damage. Tam AT; Pike BL; Hammet A; Heierhorst J Biochem Biophys Res Commun; 2007 Jun; 357(3):800-3. PubMed ID: 17442269 [TBL] [Abstract][Full Text] [Related]
16. Requirement of the Saccharomyces cerevisiae APN1 gene for the repair of mitochondrial DNA alkylation damage. Acevedo-Torres K; Fonseca-Williams S; Ayala-Torres S; Torres-Ramos CA Environ Mol Mutagen; 2009 May; 50(4):317-27. PubMed ID: 19197988 [TBL] [Abstract][Full Text] [Related]
17. Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Plosky BS; Frank EG; Berry DA; Vennall GP; McDonald JP; Woodgate R Nucleic Acids Res; 2008 Apr; 36(7):2152-62. PubMed ID: 18281311 [TBL] [Abstract][Full Text] [Related]
18. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Hryciw T; Tang M; Fontanie T; Xiao W Mol Genet Genomics; 2002 Jan; 266(5):848-57. PubMed ID: 11810260 [TBL] [Abstract][Full Text] [Related]
19. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Blank A; Kim B; Loeb LA Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9047-51. PubMed ID: 8090767 [TBL] [Abstract][Full Text] [Related]
20. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Lee K; Lee SE Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]