BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16220534)

  • 21. Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques.
    Dreisbach A; Otto A; Becher D; Hammer E; Teumer A; Gouw JW; Hecker M; Völker U
    Proteomics; 2008 May; 8(10):2062-76. PubMed ID: 18491319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochrome c-553 from the alkalophilic bacterium Bacillus pasteurii has the primary structure characteristics of a lipoprotein.
    Vandenberghe IH; Guisez Y; Ciurli S; Benini S; Van Beeumen JJ
    Biochem Biophys Res Commun; 1999 Oct; 264(2):380-7. PubMed ID: 10529373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial membrane proteomics.
    Poetsch A; Wolters D
    Proteomics; 2008 Oct; 8(19):4100-22. PubMed ID: 18780352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using amino acid and peptide composition to predict membrane protein types.
    Yang XG; Luo RY; Feng ZP
    Biochem Biophys Res Commun; 2007 Feb; 353(1):164-9. PubMed ID: 17174938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. B. subtilis ribosomal proteins: structural homology and post-translational modifications.
    Lauber MA; Running WE; Reilly JP
    J Proteome Res; 2009 Sep; 8(9):4193-206. PubMed ID: 19653700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transmembrane domain prediction and consensus sequence identification of the oligopeptide transport family.
    Wiles AM; Naider F; Becker JM
    Res Microbiol; 2006 May; 157(4):395-406. PubMed ID: 16364604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by "composite" sequence proteomic analysis.
    Fagerquist CK
    J Proteome Res; 2007 Jul; 6(7):2539-49. PubMed ID: 17508732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale proteomic analysis of membrane proteins.
    Ahram M; Springer DL
    Expert Rev Proteomics; 2004 Oct; 1(3):293-302. PubMed ID: 15966826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-classical protein secretion in bacteria.
    Bendtsen JD; Kiemer L; Fausbøll A; Brunak S
    BMC Microbiol; 2005 Oct; 5():58. PubMed ID: 16212653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a bacterial signal Peptide peptidase.
    Kim AC; Oliver DC; Paetzel M
    J Mol Biol; 2008 Feb; 376(2):352-66. PubMed ID: 18164727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new method for identification of protein (sub)families in a set of proteins based on hydropathy distribution in proteins.
    Pánek J; Eidhammer I; Aasland R
    Proteins; 2005 Mar; 58(4):923-34. PubMed ID: 15645428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR solution structure and characterization of substrate binding site of the PPIase domain of PrsA protein from Bacillus subtilis.
    Tossavainen H; Permi P; Purhonen SL; Sarvas M; Kilpeläinen I; Seppala R
    FEBS Lett; 2006 Mar; 580(7):1822-6. PubMed ID: 16516208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment.
    Elortza F; Mohammed S; Bunkenborg J; Foster LJ; Nühse TS; Brodbeck U; Peck SC; Jensen ON
    J Proteome Res; 2006 Apr; 5(4):935-43. PubMed ID: 16602701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic and computational analysis of secreted proteins with type I signal peptides from the Antarctic archaeon Methanococcoides burtonii.
    Saunders NF; Ng C; Raftery M; Guilhaus M; Goodchild A; Cavicchioli R
    J Proteome Res; 2006 Sep; 5(9):2457-64. PubMed ID: 16944959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PrediSi: prediction of signal peptides and their cleavage positions.
    Hiller K; Grote A; Scheer M; Münch R; Jahn D
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W375-9. PubMed ID: 15215414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and analysis of a new family of bacterial serine proteinases.
    Pandit SB; Srinivasan N
    In Silico Biol; 2004; 4(4):563-72. PubMed ID: 15752073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane and membrane-associated proteins in Triton X-114 extracts of Mycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies.
    Målen H; Berven FS; Søfteland T; Arntzen MØ; D'Santos CS; De Souza GA; Wiker HG
    Proteomics; 2008 May; 8(9):1859-70. PubMed ID: 18442171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic investigation of the Staphylococcus aureus type I signal peptidase SpsB - implications for the search for novel antibiotics.
    Rao S; Bockstael K; Nath S; Engelborghs Y; Anné J; Geukens N
    FEBS J; 2009 Jun; 276(12):3222-34. PubMed ID: 19438721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
    Hahne H; Wolff S; Hecker M; Becher D
    Proteomics; 2008 Oct; 8(19):4123-36. PubMed ID: 18763711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase.
    Catrein I; Herrmann R; Bosserhoff A; Ruppert T
    FEBS J; 2005 Jun; 272(11):2892-900. PubMed ID: 15943820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.