These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16220547)

  • 1. Modifications of orientational dependence of microscopic magnetic resonance imaging T(2) anisotropy in compressed articular cartilage.
    Alhadlaq HA; Xia Y
    J Magn Reson Imaging; 2005 Nov; 22(5):665-73. PubMed ID: 16220547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy.
    Alhadlaq HA; Xia Y
    Osteoarthritis Cartilage; 2004 Nov; 12(11):887-94. PubMed ID: 15501404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants.
    Neu CP; Hull ML; Walton JH; Buonocore MH
    Magn Reson Med; 2005 Feb; 53(2):321-8. PubMed ID: 15678528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage.
    Garnov N; Busse H; Gründer W
    Magn Reson Med; 2013 Jul; 70(1):225-31. PubMed ID: 23716388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The collagen fibril structure in the superficial zone of articular cartilage by microMRI.
    Zheng S; Xia Y
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1519-28. PubMed ID: 19527808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (microMRI) study.
    Xia Y; Moody JB; Alhadlaq H
    Magn Reson Med; 2002 Sep; 48(3):460-9. PubMed ID: 12210910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy.
    Alhadlaq HA; Xia Y; Moody JB; Matyas JR
    Ann Rheum Dis; 2004 Jun; 63(6):709-17. PubMed ID: 15140779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound elastomicroscopy using water jet and osmosis loading: potentials for assessment for articular cartilage.
    Zheng YP; Lu MH; Wang Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e203-9. PubMed ID: 16842834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression.
    Wang CC; Deng JM; Ateshian GA; Hung CT
    J Biomech Eng; 2002 Oct; 124(5):557-67. PubMed ID: 12405599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical determination of anisotropic material properties of bovine articular cartilage in compression.
    Wang CC; Chahine NO; Hung CT; Ateshian GA
    J Biomech; 2003 Mar; 36(3):339-53. PubMed ID: 12594982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging.
    Nieminen MT; Töyräs J; Laasanen MS; Silvennoinen J; Helminen HJ; Jurvelin JS
    J Biomech; 2004 Mar; 37(3):321-8. PubMed ID: 14757451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error optimization of a three-dimensional magnetic resonance imaging tagging-based cartilage deformation technique.
    Neu CP; Hull ML; Walton JH
    Magn Reson Med; 2005 Nov; 54(5):1290-4. PubMed ID: 16200566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique.
    Julkunen P; Korhonen RK; Nissi MJ; Jurvelin JS
    Phys Med Biol; 2008 May; 53(9):2425-38. PubMed ID: 18421123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI assessment of cartilage ultrastructure.
    Gründer W
    NMR Biomed; 2006 Nov; 19(7):855-76. PubMed ID: 17075962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
    Chan DD; Neu CP; Hull ML
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1461-8. PubMed ID: 19447213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of regional influence of magic-angle effect on t2 in human articular cartilage with osteoarthritis at 3 T.
    Wang L; Regatte RR
    Acad Radiol; 2015 Jan; 22(1):87-92. PubMed ID: 25481517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical anisotropy of the human knee articular cartilage in compression.
    Jurvelin JS; Buschmann MD; Hunziker EB
    Proc Inst Mech Eng H; 2003; 217(3):215-9. PubMed ID: 12807162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.