These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 16220962)

  • 41. Effects of various types of molecular dynamics on 1D and 2D (2)H NMR studied by random walk simulations.
    Vogel M; Rossler E
    J Magn Reson; 2000 Nov; 147(1):43-58. PubMed ID: 11042046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial encoding and the acquisition of high-resolution NMR spectra in inhomogeneous magnetic fields.
    Shapira B; Frydman L
    J Am Chem Soc; 2004 Jun; 126(23):7184-5. PubMed ID: 15186149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrafast 2D-IR spectroscopy of transient species.
    Bredenbeck J; Helbing J; Kolano C; Hamm P
    Chemphyschem; 2007 Aug; 8(12):1747-56. PubMed ID: 17615613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Multi-scan single shot" quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR.
    Pathan M; Akoka S; Tea I; Charrier B; Giraudeau P
    Analyst; 2011 Aug; 136(15):3157-63. PubMed ID: 21695323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-scan 2D Hadamard NMR spectroscopy.
    Tal A; Shapira B; Frydman L
    Angew Chem Int Ed Engl; 2009; 48(15):2732-6. PubMed ID: 19266505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-shot gradient-assisted photon echo electronic spectroscopy.
    Harel E; Fidler AF; Engel GS
    J Phys Chem A; 2011 Apr; 115(16):3787-96. PubMed ID: 21090733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy.
    Motta A; Paris D; Melck D
    Anal Chem; 2010 Mar; 82(6):2405-11. PubMed ID: 20155926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Positive identification of the principal component of a white powder as scopolamine by quantitative one-dimensional and two-dimensional NMR techniques.
    Henderson TJ; Cullinan DB; Lawrence RJ; Oyler JM
    J Forensic Sci; 2008 Jan; 53(1):151-61. PubMed ID: 18279252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.
    Lesot P; Baillif V; Billault I
    Anal Chem; 2008 Apr; 80(8):2963-72. PubMed ID: 18327921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theory of covariance nuclear magnetic resonance spectroscopy.
    Brüschweiler R
    J Chem Phys; 2004 Jul; 121(1):409-14. PubMed ID: 15260561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast (4,3)D GFT-TS NMR for NOESY of small to medium-sized proteins.
    Xia Y; Veeraraghavan S; Zhu Q; Gao X
    J Magn Reson; 2008 Jan; 190(1):142-8. PubMed ID: 17923427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time separation of natural products by ultrafast 2D NMR coupled to on-line HPLC.
    Queiroz LH; Queiroz DP; Dhooghe L; Ferreira AG; Giraudeau P
    Analyst; 2012 May; 137(10):2357-61. PubMed ID: 22454835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multidimensional NMR spectroscopy for protein characterization and assignment inside cells.
    Reardon PN; Spicer LD
    J Am Chem Soc; 2005 Aug; 127(31):10848-9. PubMed ID: 16076188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition.
    Tugarinov V; Kay LE; Ibraghimov I; Orekhov VY
    J Am Chem Soc; 2005 Mar; 127(8):2767-75. PubMed ID: 15725035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Femtosecond spectroscopy from the perspective of a global multidimensional response function.
    Nuernberger P; Lee KF; Joffre M
    Acc Chem Res; 2009 Sep; 42(9):1433-41. PubMed ID: 19601622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical shift correlations from hyperpolarized NMR by off-resonance decoupling.
    Bowen S; Zeng H; Hilty C
    Anal Chem; 2008 Aug; 80(15):5794-8. PubMed ID: 18605696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets.
    Kazimierczuk K; Koźmiński W; Zhukov I
    J Magn Reson; 2006 Apr; 179(2):323-8. PubMed ID: 16488634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new method for measuring diffusion coefficients by 2D NMR using accordion spectroscopy.
    Millet O; Pons M
    J Magn Reson; 1998 Mar; 131(1):166-9. PubMed ID: 9533922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information.
    Kim S; Szyperski T
    J Am Chem Soc; 2003 Feb; 125(5):1385-93. PubMed ID: 12553842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homo- and heteronuclear two-dimensional covariance solid-state NMR spectroscopy with a dual-receiver system.
    Takeda K; Kusakabe Y; Noda Y; Fukuchi M; Takegoshi K
    Phys Chem Chem Phys; 2012 Jul; 14(27):9715-21. PubMed ID: 22684522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.