BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16221237)

  • 41. Rebound kinetics of beta2-microglobulin after hemodialysis.
    Leypoldt JK; Cheung AK; Deeter RB
    Kidney Int; 1999 Oct; 56(4):1571-7. PubMed ID: 10504510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beta-2 microglobulin levels in hemodialysis patients.
    Mumtaz A; Anees M; Bilal M; Ibrahim M
    Saudi J Kidney Dis Transpl; 2010 Jul; 21(4):701-6. PubMed ID: 20587875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The removal of beta 2-microglobulin during continuous and intermittent hemofiltration].
    Timokhov VS; Kazakov IV; Toritsina LK; Ametov AS; Semavin IE
    Urol Nefrol (Mosk); 1989; (5):47-51. PubMed ID: 2688248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of urea and beta-microglobulin during and after short hemodialysis treatments.
    Leypoldt JK; Cheung AK; Deeter RB; Goldfarb-Rumyantzev A; Greene T; Depner TA; Kusek J
    Kidney Int; 2004 Oct; 66(4):1669-76. PubMed ID: 15458465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New high-cutoff dialyzer allows improved middle molecule clearance without an increase in albumin loss: a clinical crossover comparison in extended dialysis.
    Schmidt JJ; Hafer C; Clajus C; Hadem J; Beutel G; Schmidt BM; Kielstein JT
    Blood Purif; 2012; 34(3-4):246-52. PubMed ID: 23171639
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein loss in on-line hemofiltration.
    Santoro A; Canova C; Mancini E; Deppisch R; Beck W
    Blood Purif; 2004; 22(3):261-8. PubMed ID: 15148454
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of convection on small molecule clearances in online hemodiafiltration.
    Ficheux A; Argilés A; Mion H; Mion CM
    Kidney Int; 2000 Apr; 57(4):1755-63. PubMed ID: 10760112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of on-line high-flux hemofiltration versus low-flux hemodialysis on mortality in chronic kidney failure: a small randomized controlled trial.
    Santoro A; Mancini E; Bolzani R; Boggi R; Cagnoli L; Francioso A; Fusaroli M; Piazza V; Rapanà R; Strippoli GF
    Am J Kidney Dis; 2008 Sep; 52(3):507-18. PubMed ID: 18617304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration.
    Ward RA; Greene T; Hartmann B; Samtleben W
    Kidney Int; 2006 Apr; 69(8):1431-7. PubMed ID: 16395268
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of various treatment modes in terms of beta 2-microglobulin removal: hemodialysis, hemofiltration, and push/pull HDF.
    Shinzato T; Kobayakawa H; Maeda K
    Artif Organs; 1989 Feb; 13(1):66-70. PubMed ID: 2653287
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocompatibility evaluation of polyamide hemofiltration.
    Panichi V; Bianchi AM; Andreini B; Casarosa L; Migliori M; De Pietro S; Taccola D; Giovannini L; Palla R
    Int J Artif Organs; 1998 Jul; 21(7):408-13. PubMed ID: 9745996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relative importance of residual renal function and convection in determining beta-2-microglobulin levels in high-flux haemodialysis and on-line haemodiafiltration.
    Fry AC; Singh DK; Chandna SM; Farrington K
    Blood Purif; 2007; 25(3):295-302. PubMed ID: 17622712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration.
    Leypoldt JK
    Semin Dial; 2005; 18(5):401-8. PubMed ID: 16191181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Citrate clearance in children receiving continuous venovenous renal replacement therapy.
    Chadha V; Garg U; Warady BA; Alon US
    Pediatr Nephrol; 2002 Oct; 17(10):819-24. PubMed ID: 12376810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [On-line sequential hemodiafiltration (HDF-OL-S): a new therapeutic option].
    Kanter J; Puerta MC; García RP; Gómez JM; Jofré R; Rodríguez PB
    Nefrologia; 2008; 28(4):433-8. PubMed ID: 18662152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The hemodynamic effect of calcium ion concentration in the infusate during predilution hemofiltration in chronic renal failure.
    Karamperis N; Sloth E; Jensen JD
    Am J Kidney Dis; 2005 Sep; 46(3):470-80. PubMed ID: 16129209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solutes removal characteristics at various effluent rates during different continuous renal replacement therapy modalities.
    Yu W; Zhuang F; Ma S; Zhu M; Ding F
    Int J Artif Organs; 2019 Jul; 42(7):354-361. PubMed ID: 30905252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of mid-dilution haemodiafiltration: technique and performance.
    Pedrini LA; Feliciani A; Zerbi S; Cozzi G; Ruggiero P
    Nephrol Dial Transplant; 2009 Sep; 24(9):2816-24. PubMed ID: 19420103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predilution versus postdilution continuous venovenous hemofiltration: no effect on filter life and azotemic control in critically ill patients on heparin.
    Nurmohamed SA; Jallah BP; Vervloet MG; Beishuizen A; Groeneveld AB
    ASAIO J; 2011; 57(1):48-52. PubMed ID: 21084966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequential hemofiltration-hemodiafiltration technique: all in one?
    Amato M; Brendolan A; Campolo G; Petras D; Bonello M; Crepaldi C; Ronco C
    Contrib Nephrol; 2005; 149():115-120. PubMed ID: 15876835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.