These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 16221306)
1. Methods for confidence interval estimation of a ratio parameter with application to location quotients. Beyene J; Moineddin R BMC Med Res Methodol; 2005 Oct; 5():32. PubMed ID: 16221306 [TBL] [Abstract][Full Text] [Related]
2. Sample size and power estimation for studies with health related quality of life outcomes: a comparison of four methods using the SF-36. Walters SJ Health Qual Life Outcomes; 2004 May; 2():26. PubMed ID: 15161494 [TBL] [Abstract][Full Text] [Related]
3. Confidence intervals for cost-effectiveness ratios: an application of Fieller's theorem. Willan AR; O'Brien BJ Health Econ; 1996; 5(4):297-305. PubMed ID: 8880166 [TBL] [Abstract][Full Text] [Related]
4. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Lord D Accid Anal Prev; 2006 Jul; 38(4):751-66. PubMed ID: 16545328 [TBL] [Abstract][Full Text] [Related]
5. Odds ratios for a continuous outcome variable without dichotomizing. Moser BK; Coombs LP Stat Med; 2004 Jun; 23(12):1843-60. PubMed ID: 15195319 [TBL] [Abstract][Full Text] [Related]
6. The use of bootstrap methods for estimating sample size and analysing health-related quality of life outcomes. Walters SJ; Campbell MJ Stat Med; 2005 Apr; 24(7):1075-102. PubMed ID: 15570625 [TBL] [Abstract][Full Text] [Related]
7. Computation of profile likelihood-based confidence intervals for reference limits with covariates. Virtanen A; Uusipaikka E Stat Med; 2008 Mar; 27(7):1121-32. PubMed ID: 17674394 [TBL] [Abstract][Full Text] [Related]
8. A geometric confidence ellipse approach to the estimation of the ratio of two variables. Walter SD; Gafni A; Birch S Stat Med; 2008 Dec; 27(28):5956-74. PubMed ID: 18720350 [TBL] [Abstract][Full Text] [Related]
9. Generalized confidence intervals for ratios of regression coefficients with applications to bioassays. Bebu I; Seillier-Moiseiwitsch F; Mathew T Biom J; 2009 Dec; 51(6):1047-58. PubMed ID: 19894218 [TBL] [Abstract][Full Text] [Related]
10. Confidence intervals for ratios of AUCs in the case of serial sampling: a comparison of seven methods. Jaki T; Wolfsegger MJ; Ploner M Pharm Stat; 2009; 8(1):12-24. PubMed ID: 18407562 [TBL] [Abstract][Full Text] [Related]
11. Use of the Fieller-Hinkley distribution of the ratio of random variables in testing for noninferiority. Koti KM J Biopharm Stat; 2007; 17(2):215-28. PubMed ID: 17365219 [TBL] [Abstract][Full Text] [Related]
12. Variance and confidence limits in validation studies based on comparison between three different types of measurements. Ferrari P; Kaaks R; Riboli E J Epidemiol Biostat; 2000; 5(5):303-13. PubMed ID: 11142606 [TBL] [Abstract][Full Text] [Related]
13. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Zhu Y; Wang T; Jelsovsky JZ Risk Anal; 2007 Apr; 27(2):447-65. PubMed ID: 17511711 [TBL] [Abstract][Full Text] [Related]
14. Interval estimates for the ratio and difference of two lognormal means. Chen YH; Zhou XH Stat Med; 2006 Dec; 25(23):4099-113. PubMed ID: 16479559 [TBL] [Abstract][Full Text] [Related]
15. A note on effective sample size for constructing confidence intervals for the difference of two proportions. Liu GF Pharm Stat; 2012; 11(2):163-9. PubMed ID: 22337507 [TBL] [Abstract][Full Text] [Related]
16. Eight interval estimators of a common rate ratio under stratified Poisson sampling. Lui KJ Stat Med; 2004 Apr; 23(8):1283-96. PubMed ID: 15083483 [TBL] [Abstract][Full Text] [Related]
17. Calculating confidence intervals for prediction error in microarray classification using resampling. Jiang W; Varma S; Simon R Stat Appl Genet Mol Biol; 2008; 7(1):Article8. PubMed ID: 18312213 [TBL] [Abstract][Full Text] [Related]
18. Alternative methods to evaluate trial level surrogacy. Abrahantes JC; Shkedy Z; Molenberghs G Clin Trials; 2008; 5(3):194-208. PubMed ID: 18559408 [TBL] [Abstract][Full Text] [Related]
19. Confidence intervals for P(Y1>Y2) with normal outcomes in linear models. Tian L Stat Med; 2008 Sep; 27(21):4221-37. PubMed ID: 18407578 [TBL] [Abstract][Full Text] [Related]
20. Likelihood-based confidence intervals for a log-normal mean. Wu J; Wong AC; Jiang G Stat Med; 2003 Jun; 22(11):1849-60. PubMed ID: 12754720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]