These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16221549)

  • 21. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls.
    Lockhart TE; Kim S
    Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike.
    Grönqvist R; Hirvonen M; Rajamäki E; Matz S
    Accid Anal Prev; 2003 Mar; 35(2):211-25. PubMed ID: 12504142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proprioception, gait kinematics, and rate of loading during walking: are they related?
    Riskowski JL; Mikesky AE; Bahamonde RE; Alvey TV; Burr DB
    J Musculoskelet Neuronal Interact; 2005; 5(4):379-87. PubMed ID: 16340143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retention of adaptive control over varying intervals: prevention of slip- induced backward balance loss during gait.
    Bhatt T; Wang E; Pai YC
    J Neurophysiol; 2006 May; 95(5):2913-22. PubMed ID: 16407423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ankle function during gait in patients with chronic ankle instability compared to controls.
    Monaghan K; Delahunt E; Caulfield B
    Clin Biomech (Bristol); 2006 Feb; 21(2):168-74. PubMed ID: 16269208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stepping over obstacles of different heights and varied shoe traction alter the kinetic strategies of the leading limb.
    Houser JJ; Decker L; Stergiou N
    Ergonomics; 2008 Dec; 51(12):1847-59. PubMed ID: 18608479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of heel lifts on trunk muscle activation during gait: a study of young healthy females.
    Barton CJ; Coyle JA; Tinley P
    J Electromyogr Kinesiol; 2009 Aug; 19(4):598-606. PubMed ID: 18472278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability.
    Burnfield JM; Tsai YJ; Powers CM
    Gait Posture; 2005 Aug; 22(1):82-8. PubMed ID: 15996597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gait adaptation on surfaces with different degrees of slipperiness.
    Chang WR; Chang CC; Lesch MF; Matz S
    Appl Ergon; 2017 Mar; 59(Pt A):333-341. PubMed ID: 27890145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical implications of the negative heel rocker sole shoe: gait kinematics and kinetics.
    Myers KA; Long JT; Klein JP; Wertsch JJ; Janisse D; Harris GF
    Gait Posture; 2006 Nov; 24(3):323-30. PubMed ID: 16300949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Temporal, kinetic and kinematic asymmetry in gait initiation in one subject with hemiplegia].
    Bensoussan L; Mesure S; Viton JM; Curvale G; Delarque A
    Ann Readapt Med Phys; 2004 Nov; 47(9):611-20. PubMed ID: 15539068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of lower-limb muscle power in gait of people without impairments.
    Sadeghi H
    Phys Ther; 2000 Dec; 80(12):1188-96. PubMed ID: 11087305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilized friction when entering and exiting a dry and wet bathtub.
    Siegmund GP; Flynn J; Mang DW; Chimich DD; Gardiner JC
    Gait Posture; 2010 Apr; 31(4):473-8. PubMed ID: 20188564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continual use of augmented low-Dye taping increases arch height in standing but does not influence neuromotor control of gait.
    Franettovich M; Chapman A; Blanch P; Vicenzino B
    Gait Posture; 2010 Feb; 31(2):247-50. PubMed ID: 19944608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance.
    Burnfield JM; Powers CM
    Ergonomics; 2006 Aug; 49(10):982-95. PubMed ID: 16803728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in gait when anticipating slippery floors.
    Cham R; Redfern MS
    Gait Posture; 2002 Apr; 15(2):159-71. PubMed ID: 11869910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping.
    Bhatt T; Wening JD; Pai YC
    Gait Posture; 2005 Feb; 21(2):146-56. PubMed ID: 15639393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames.
    Schache AG; Baker R; Vaughan CL
    J Biomech; 2007; 40(1):9-19. PubMed ID: 16442547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.
    Tsai YJ; Powers CM
    Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.