These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 16221549)
41. Effects of age-related gait changes on the biomechanics of slips and falls. Lockhart TE; Woldstad JC; Smith JL Ergonomics; 2003 Oct; 46(12):1136-60. PubMed ID: 12933077 [TBL] [Abstract][Full Text] [Related]
42. Experimentally reduced hip abductor function during walking: Implications for knee joint loads. Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926 [TBL] [Abstract][Full Text] [Related]
43. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism. Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197 [TBL] [Abstract][Full Text] [Related]
44. Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Lynn SK; Costigan PA Clin Biomech (Bristol); 2008 Jul; 23(6):779-86. PubMed ID: 18343001 [TBL] [Abstract][Full Text] [Related]
45. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment. Fang L; Jia X; Wang R Clin Biomech (Bristol); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203 [TBL] [Abstract][Full Text] [Related]
46. Control of dynamic stability during adaptation to gait termination on a slippery surface. Oates AR; Frank JS; Patla AE Exp Brain Res; 2010 Feb; 201(1):47-57. PubMed ID: 19834697 [TBL] [Abstract][Full Text] [Related]
47. The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics-- A gait simulation approach. Mahboobin A; Cham R; Piazza SJ J Biomech; 2010 May; 43(8):1532-9. PubMed ID: 20170922 [TBL] [Abstract][Full Text] [Related]
48. [Kinetic changes of canine's hindlimbs after fixation of one forelimb]. Li H; Zhang C; Bai Y; Zhou J; Zeng B Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):66-9. PubMed ID: 18361242 [TBL] [Abstract][Full Text] [Related]
49. Why anticipatory postural adjustments in gait initiation need to be modified when stepping up onto a new level? Gélat T; Le Pellec A Neurosci Lett; 2007 Dec; 429(1):17-21. PubMed ID: 17964073 [TBL] [Abstract][Full Text] [Related]
50. Assessment of walkway tribometer readings in evaluating slip resistance: a gait-based approach. Powers CM; Brault JR; Stefanou MA; Tsai YJ; Flynn J; Siegmund GP J Forensic Sci; 2007 Mar; 52(2):400-5. PubMed ID: 17316240 [TBL] [Abstract][Full Text] [Related]
51. Association of subjective ratings of slipperiness to heel displacement following contact with the floor. DiDomenico A; McGorry RW; Chang CC Appl Ergon; 2007 Sep; 38(5):533-9. PubMed ID: 17097598 [TBL] [Abstract][Full Text] [Related]
52. Slipping of the foot on the floor when pulling a pallet truck. Li KW; Chang CC; Chang WR Appl Ergon; 2008 Nov; 39(6):812-9. PubMed ID: 18222414 [TBL] [Abstract][Full Text] [Related]
53. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees. Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888 [TBL] [Abstract][Full Text] [Related]
54. Contribution of feedback and feedforward strategies to locomotor adaptations. Lam T; Anderschitz M; Dietz V J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453 [TBL] [Abstract][Full Text] [Related]
55. Kinematics of heelstrike during walking and carrying: implications for slip resistance testing. Holbein-Jenny MA; Redfern MS; Gottesman D; Chaffin DB Ergonomics; 2007 Mar; 50(3):352-63. PubMed ID: 17536773 [TBL] [Abstract][Full Text] [Related]
56. Corrective postural responses evoked by completely unexpected loss of ground support during human walking. Shinya M; Fujii S; Oda S Gait Posture; 2009 Apr; 29(3):483-7. PubMed ID: 19128973 [TBL] [Abstract][Full Text] [Related]
57. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267 [TBL] [Abstract][Full Text] [Related]
58. Idiopathic toe walking: a kinematic and kinetic profile. Westberry DE; Davids JR; Davis RB; de Morais Filho MC J Pediatr Orthop; 2008; 28(3):352-8. PubMed ID: 18362803 [TBL] [Abstract][Full Text] [Related]
59. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. Yakimovich T; Lemaire ED; Kofman J Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186 [TBL] [Abstract][Full Text] [Related]
60. Learning to walk with a robotic ankle exoskeleton. Gordon KE; Ferris DP J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]