These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16221752)
1. Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Galetin A; Burt H; Gibbons L; Houston JB Drug Metab Dispos; 2006 Jan; 34(1):166-75. PubMed ID: 16221752 [TBL] [Abstract][Full Text] [Related]
2. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Brown HS; Galetin A; Hallifax D; Houston JB Clin Pharmacokinet; 2006; 45(10):1035-50. PubMed ID: 16984215 [TBL] [Abstract][Full Text] [Related]
3. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. Veronese ML; Gillen LP; Burke JP; Dorval EP; Hauck WW; Pequignot E; Waldman SA; Greenberg HE J Clin Pharmacol; 2003 Aug; 43(8):831-9. PubMed ID: 12953340 [TBL] [Abstract][Full Text] [Related]
4. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Ohno Y; Hisaka A; Suzuki H Clin Pharmacokinet; 2007; 46(8):681-96. PubMed ID: 17655375 [TBL] [Abstract][Full Text] [Related]
5. Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Zhang X; Jones DR; Hall SD Drug Metab Dispos; 2009 Jan; 37(1):150-60. PubMed ID: 18854379 [TBL] [Abstract][Full Text] [Related]
6. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Rowland Yeo K; Walsky RL; Jamei M; Rostami-Hodjegan A; Tucker GT Eur J Pharm Sci; 2011 Jun; 43(3):160-73. PubMed ID: 21540107 [TBL] [Abstract][Full Text] [Related]
7. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Mueck W; Kubitza D; Becka M Br J Clin Pharmacol; 2013 Sep; 76(3):455-66. PubMed ID: 23305158 [TBL] [Abstract][Full Text] [Related]
8. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin. Quinney SK; Zhang X; Lucksiri A; Gorski JC; Li L; Hall SD Drug Metab Dispos; 2010 Feb; 38(2):241-8. PubMed ID: 19884323 [TBL] [Abstract][Full Text] [Related]
9. Maximal inhibition of intestinal first-pass metabolism as a pragmatic indicator of intestinal contribution to the drug-drug interactions for CYP3A4 cleared drugs. Galetin A; Hinton LK; Burt H; Obach RS; Houston JB Curr Drug Metab; 2007 Oct; 8(7):685-93. PubMed ID: 17979656 [TBL] [Abstract][Full Text] [Related]
10. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Brown HS; Ito K; Galetin A; Houston JB Br J Clin Pharmacol; 2005 Nov; 60(5):508-18. PubMed ID: 16236041 [TBL] [Abstract][Full Text] [Related]
11. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Mayhew BS; Jones DR; Hall SD Drug Metab Dispos; 2000 Sep; 28(9):1031-7. PubMed ID: 10950845 [TBL] [Abstract][Full Text] [Related]
12. Effect of mibefradil on CYP3A4 in vivo. Veronese ML; Gillen LP; Dorval EP; Hauck WW; Waldman SA; Greenberg HE J Clin Pharmacol; 2003 Oct; 43(10):1091-100. PubMed ID: 14517191 [TBL] [Abstract][Full Text] [Related]
13. Semiphysiologically based pharmacokinetic models for the inhibition of midazolam clearance by diltiazem and its major metabolite. Zhang X; Quinney SK; Gorski JC; Jones DR; Hall SD Drug Metab Dispos; 2009 Aug; 37(8):1587-97. PubMed ID: 19420129 [TBL] [Abstract][Full Text] [Related]
14. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Polasek TM; Miners JO Eur J Clin Pharmacol; 2006 Mar; 62(3):203-8. PubMed ID: 16416302 [TBL] [Abstract][Full Text] [Related]
15. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. McConn DJ; Lin YS; Allen K; Kunze KL; Thummel KE Drug Metab Dispos; 2004 Oct; 32(10):1083-91. PubMed ID: 15377640 [TBL] [Abstract][Full Text] [Related]
16. Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Mouly SJ; Matheny C; Paine MF; Smith G; Lamba J; Lamba V; Pusek SN; Schuetz EG; Stewart PW; Watkins PB Clin Pharmacol Ther; 2005 Dec; 78(6):605-18. PubMed ID: 16338276 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Pinto AG; Wang YH; Chalasani N; Skaar T; Kolwankar D; Gorski JC; Liangpunsakul S; Hamman MA; Arefayene M; Hall SD Clin Pharmacol Ther; 2005 Mar; 77(3):178-88. PubMed ID: 15735612 [TBL] [Abstract][Full Text] [Related]
19. Inhibition and stimulation of intestinal and hepatic CYP3A activity: studies in humanized CYP3A4 transgenic mice using triazolam. van Waterschoot RA; Rooswinkel RW; Sparidans RW; van Herwaarden AE; Beijnen JH; Schinkel AH Drug Metab Dispos; 2009 Dec; 37(12):2305-13. PubMed ID: 19752211 [TBL] [Abstract][Full Text] [Related]
20. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Gorski JC; Jones DR; Haehner-Daniels BD; Hamman MA; O'Mara EM; Hall SD Clin Pharmacol Ther; 1998 Aug; 64(2):133-43. PubMed ID: 9728893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]