BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16221764)

  • 1. Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15418-22. PubMed ID: 16221764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of substrate recognition mechanisms by tRNA splicing endonucleases.
    Fabbri S; Fruscoloni P; Bufardeci E; Di Nicola Negri E; Baldi MI; Attardi DG; Mattoccia E; Tocchini-Valentini GP
    Science; 1998 Apr; 280(5361):284-6. PubMed ID: 9535657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA recognition and cleavage by a splicing endonuclease.
    Xue S; Calvin K; Li H
    Science; 2006 May; 312(5775):906-10. PubMed ID: 16690865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of a substrate for the archaeal pre-tRNA splicing endonucleases: the bulge-helix-bulge motif.
    Diener JL; Moore PB
    Mol Cell; 1998 May; 1(6):883-94. PubMed ID: 9660971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleavage of non-tRNA substrates by eukaryal tRNA splicing endonucleases.
    Fruscoloni P; Baldi MI; Tocchini-Valentini GP
    EMBO Rep; 2001 Mar; 2(3):217-21. PubMed ID: 11266363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity.
    Fujishima K; Sugahara J; Miller CS; Baker BJ; Di Giulio M; Takesue K; Sato A; Tomita M; Banfield JF; Kanai A
    Nucleic Acids Res; 2011 Dec; 39(22):9695-704. PubMed ID: 21880595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications.
    Marck C; Grosjean H
    RNA; 2003 Dec; 9(12):1516-31. PubMed ID: 14624007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mutational analysis of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728: catalytic mechanism of tRNA intron-splicing endonucleases.
    Kim YK; Mizutani K; Rhee KH; Nam KH; Lee WH; Lee EH; Kim EE; Park SY; Hwang KY
    J Bacteriol; 2007 Nov; 189(22):8339-46. PubMed ID: 17827289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of introns in the archaeal world.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4782-7. PubMed ID: 21383132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pre-tRNA carrying intron features typical of Archaea is spliced in yeast.
    Di Segni G; Borghese L; Sebastiani S; Tocchini-Valentini GP
    RNA; 2005 Jan; 11(1):70-6. PubMed ID: 15574514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of intron from the standard or non-standard position of the precursor tRNA by the splicing endonuclease of Aeropyrum pernix, a hyper-thermophilic Crenarchaeon, involves a novel RNA recognition site in the Crenarchaea specific loop.
    Hirata A; Kitajima T; Hori H
    Nucleic Acids Res; 2011 Nov; 39(21):9376-89. PubMed ID: 21846775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves.
    Randau L; Calvin K; Hall M; Yuan J; Podar M; Li H; Söll D
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17934-9. PubMed ID: 16330750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8933-8. PubMed ID: 15937113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease.
    Yoshinari S; Itoh T; Hallam SJ; DeLong EF; Yokobori S; Yamagishi A; Oshima T; Kita K; Watanabe Y
    Biochem Biophys Res Commun; 2006 Aug; 346(3):1024-32. PubMed ID: 16781672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity.
    Kaneta A; Fujishima K; Morikazu W; Hori H; Hirata A
    Nucleic Acids Res; 2018 Feb; 46(4):1958-1972. PubMed ID: 29346615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases.
    Trotta CR; Miao F; Arn EA; Stevens SW; Ho CK; Rauhut R; Abelson JN
    Cell; 1997 Jun; 89(6):849-58. PubMed ID: 9200603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex.
    Hayne CK; Butay KJU; Stewart ZD; Krahn JM; Perera L; Williams JG; Petrovitch RM; Deterding LJ; Matera AG; Borgnia MJ; Stanley RE
    Nat Struct Mol Biol; 2023 Jun; 30(6):824-833. PubMed ID: 37231153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease.
    Hayne CK; Sekulovski S; Hurtig JE; Stanley RE; Trowitzsch S; van Hoof A
    J Biol Chem; 2023 Sep; 299(9):105138. PubMed ID: 37544645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.