These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16221767)

  • 1. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans.
    Rétey JV; Adam M; Honegger E; Khatami R; Luhmann UF; Jung HH; Berger W; Landolt HP
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15676-81. PubMed ID: 16221767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans.
    Bachmann V; Klaus F; Bodenmann S; Schäfer N; Brugger P; Huber S; Berger W; Landolt HP
    Cereb Cortex; 2012 Apr; 22(4):962-70. PubMed ID: 21734253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep homeostasis: a role for adenosine in humans?
    Landolt HP
    Biochem Pharmacol; 2008 Jun; 75(11):2070-9. PubMed ID: 18384754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.
    Mazzotti DR; Guindalini C; de Souza AA; Sato JR; Santos-Silva R; Bittencourt LR; Tufik S
    PLoS One; 2012; 7(8):e44154. PubMed ID: 22952909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic determination of sleep EEG profiles in healthy humans.
    Landolt HP
    Prog Brain Res; 2011; 193():51-61. PubMed ID: 21854955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local sleep and learning.
    Huber R; Ghilardi MF; Massimini M; Tononi G
    Nature; 2004 Jul; 430(6995):78-81. PubMed ID: 15184907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample.
    Mazzotti DR; Guindalini C; Pellegrino R; Barrueco KF; Santos-Silva R; Bittencourt LR; Tufik S
    Sleep; 2011 Mar; 34(3):399-402. PubMed ID: 21359089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans.
    Holst SC; Bersagliere A; Bachmann V; Berger W; Achermann P; Landolt HP
    J Neurosci; 2014 Jan; 34(2):566-73. PubMed ID: 24403155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adenosine-mediated, neuronal-glial, homeostatic sleep response.
    Greene RW; Bjorness TE; Suzuki A
    Curr Opin Neurobiol; 2017 Jun; 44():236-242. PubMed ID: 28633050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans.
    Landolt HP; Rétey JV; Tönz K; Gottselig JM; Khatami R; Buckelmüller I; Achermann P
    Neuropsychopharmacology; 2004 Oct; 29(10):1933-9. PubMed ID: 15257305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.
    Perrault R; Carrier J; Desautels A; Montplaisir J; Zadra A
    J Sleep Res; 2013 Aug; 22(4):430-3. PubMed ID: 23398262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.
    Van Der Werf YD; Altena E; Vis JC; Koene T; Van Someren EJ
    Prog Brain Res; 2011; 193():245-55. PubMed ID: 21854967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of slow oscillations by rhythmic acoustic stimulation.
    Ngo HV; Claussen JC; Born J; Mölle M
    J Sleep Res; 2013 Feb; 22(1):22-31. PubMed ID: 22913273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adenosine in sleep in rats.
    Radulovacki M
    Rev Clin Basic Pharm; 1985; 5(3-4):327-39. PubMed ID: 3916307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.