These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16221843)

  • 1. Disruption and recovery of patterned retinal activity in the absence of acetylcholine.
    Stacy RC; Demas J; Burgess RW; Sanes JR; Wong RO
    J Neurosci; 2005 Oct; 25(41):9347-57. PubMed ID: 16221843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina.
    Bansal A; Singer JH; Hwang BJ; Xu W; Beaudet A; Feller MB
    J Neurosci; 2000 Oct; 20(20):7672-81. PubMed ID: 11027228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina.
    Singer JH; Mirotznik RR; Feller MB
    J Neurosci; 2001 Nov; 21(21):8514-22. PubMed ID: 11606640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.
    Xu HP; Burbridge TJ; Ye M; Chen M; Ge X; Zhou ZJ; Crair MC
    J Neurosci; 2016 Mar; 36(13):3871-86. PubMed ID: 27030771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells.
    Famiglietti EV; Sundquist SJ
    Vis Neurosci; 2010 Mar; 27(1-2):19-42. PubMed ID: 20392300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.
    Ford KJ; FĂ©lix AL; Feller MB
    J Neurosci; 2012 Jan; 32(3):850-63. PubMed ID: 22262883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
    Feller MB; Wellis DP; Stellwagen D; Werblin FS; Shatz CJ
    Science; 1996 May; 272(5265):1182-7. PubMed ID: 8638165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Ca2+ transients and their transmission in the developing chick retina.
    Catsicas M; Bonness V; Becker D; Mobbs P
    Curr Biol; 1998 Feb; 8(5):283-6. PubMed ID: 9501073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves.
    Yan RS; Yang XL; Zhong YM; Zhang DQ
    Cells; 2020 Dec; 9(12):. PubMed ID: 33271919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.
    Blankenship AG; Hamby AM; Firl A; Vyas S; Maxeiner S; Willecke K; Feller MB
    J Neurosci; 2011 Jul; 31(27):9998-10008. PubMed ID: 21734291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits.
    Kirkby LA; Feller MB
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):12090-5. PubMed ID: 23821744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.
    Firl A; Ke JB; Zhang L; Fuerst PG; Singer JH; Feller MB
    J Neurosci; 2015 Jan; 35(4):1675-86. PubMed ID: 25632142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves.
    Shah RD; Crair MC
    J Neurosci; 2008 Jan; 28(1):292-303. PubMed ID: 18171946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant patterning of neuromuscular synapses in choline acetyltransferase-deficient mice.
    Brandon EP; Lin W; D'Amour KA; Pizzo DP; Dominguez B; Sugiura Y; Thode S; Ko CP; Thal LJ; Gage FH; Lee KF
    J Neurosci; 2003 Jan; 23(2):539-49. PubMed ID: 12533614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina.
    Zhang J; Yang Z; Wu SM
    J Comp Neurol; 2005 Apr; 484(3):331-43. PubMed ID: 15739235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
    McLaughlin T; Torborg CL; Feller MB; O'Leary DD
    Neuron; 2003 Dec; 40(6):1147-60. PubMed ID: 14687549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of choline acetyltransferase in enteric neurons results in postnatal intestinal dysmotility and dysbiosis.
    Johnson CD; Barlow-Anacker AJ; Pierre JF; Touw K; Erickson CS; Furness JB; Epstein ML; Gosain A
    FASEB J; 2018 Sep; 32(9):4744-4752. PubMed ID: 29570391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase.
    Misgeld T; Burgess RW; Lewis RM; Cunningham JM; Lichtman JW; Sanes JR
    Neuron; 2002 Nov; 36(4):635-48. PubMed ID: 12441053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intricate paths of cells and networks becoming "Cholinergic" in the embryonic chicken retina.
    Thangaraj G; Greif A; Bachmann G; Layer PG
    J Comp Neurol; 2012 Oct; 520(14):3181-93. PubMed ID: 22886733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and disassembly of a retinal cholinergic network.
    Ford KJ; Feller MB
    Vis Neurosci; 2012 Jan; 29(1):61-71. PubMed ID: 21787461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.