These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16221856)

  • 1. Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein.
    Larson J; Jessen RE; Kim D; Fine AK; du Hoffmann J
    J Neurosci; 2005 Oct; 25(41):9460-9. PubMed ID: 16221856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice.
    Koga K; Liu MG; Qiu S; Song Q; O'Den G; Chen T; Zhuo M
    J Neurosci; 2015 Feb; 35(5):2033-43. PubMed ID: 25653361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragile X mental retardation protein regulates heterosynaptic plasticity in the hippocampus.
    Connor SA; Hoeffer CA; Klann E; Nguyen PV
    Learn Mem; 2011; 18(4):207-20. PubMed ID: 21430043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis.
    Auerbach BD; Bear MF
    J Neurophysiol; 2010 Aug; 104(2):1047-51. PubMed ID: 20554840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse.
    Gocel J; Larson J
    Neuroscience; 2012 Sep; 221():170-81. PubMed ID: 22750206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.
    Xu ZH; Yang Q; Ma L; Liu SB; Chen GS; Wu YM; Li XQ; Liu G; Zhao MG
    PLoS One; 2012; 7(10):e48741. PubMed ID: 23119095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome.
    Padmashri R; Reiner BC; Suresh A; Spartz E; Dunaevsky A
    J Neurosci; 2013 Dec; 33(50):19715-23. PubMed ID: 24336735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome.
    Zeier Z; Kumar A; Bodhinathan K; Feller JA; Foster TC; Bloom DC
    Gene Ther; 2009 Sep; 16(9):1122-9. PubMed ID: 19571888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice.
    Shang Y; Wang H; Mercaldo V; Li X; Chen T; Zhuo M
    J Neurochem; 2009 Nov; 111(3):635-46. PubMed ID: 19659572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taurine regulation of short term synaptic plasticity in fragile X mice.
    El Idrissi A; Neuwirth LS; L'Amoreaux W
    J Biomed Sci; 2010 Aug; 17 Suppl 1(Suppl 1):S15. PubMed ID: 20804589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescue of NMDAR-dependent synaptic plasticity in Fmr1 knock-out mice.
    Bostrom CA; Majaess NM; Morch K; White E; Eadie BD; Christie BR
    Cereb Cortex; 2015 Jan; 25(1):271-9. PubMed ID: 23968838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome.
    Lauterborn JC; Rex CS; Kramár E; Chen LY; Pandyarajan V; Lynch G; Gall CM
    J Neurosci; 2007 Oct; 27(40):10685-94. PubMed ID: 17913902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.
    Martin HGS; Lassalle O; Brown JT; Manzoni OJ
    Cereb Cortex; 2016 May; 26(5):2084-2092. PubMed ID: 25750254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models.
    Zhang J; Hou L; Klann E; Nelson DL
    J Neurophysiol; 2009 May; 101(5):2572-80. PubMed ID: 19244359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome.
    Wahlstrom-Helgren S; Klyachko VA
    J Physiol; 2015 Nov; 593(22):5009-24. PubMed ID: 26282581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency.
    Li J; Pelletier MR; Perez Velazquez JL; Carlen PL
    Mol Cell Neurosci; 2002 Feb; 19(2):138-51. PubMed ID: 11860268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased long-term potentiation at medial-perforant path-dentate granule cell synapses induced by selective inhibition of histone deacetylase 3 requires Fragile X mental retardation protein.
    Franklin AV; Rusche JR; McMahon LL
    Neurobiol Learn Mem; 2014 Oct; 114():193-7. PubMed ID: 24956240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome.
    Chen T; Lu JS; Song Q; Liu MG; Koga K; Descalzi G; Li YQ; Zhuo M
    Neuropsychopharmacology; 2014 Jul; 39(8):1955-67. PubMed ID: 24553731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LTP induction translocates cortactin at distant synapses in wild-type but not Fmr1 knock-out mice.
    Seese RR; Babayan AH; Katz AM; Cox CD; Lauterborn JC; Lynch G; Gall CM
    J Neurosci; 2012 May; 32(21):7403-13. PubMed ID: 22623686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome.
    Zhao MG; Toyoda H; Ko SW; Ding HK; Wu LJ; Zhuo M
    J Neurosci; 2005 Aug; 25(32):7385-92. PubMed ID: 16093389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.