BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16221859)

  • 21. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density.
    Borczyk M; Śliwińska MA; Caly A; Bernas T; Radwanska K
    Sci Rep; 2019 Feb; 9(1):1693. PubMed ID: 30737431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology.
    Hodges JL; Newell-Litwa K; Asmussen H; Vicente-Manzanares M; Horwitz AR
    PLoS One; 2011; 6(8):e24149. PubMed ID: 21887379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines.
    Lin H; Huganir R; Liao D
    Biochem Biophys Res Commun; 2004 Apr; 316(2):501-11. PubMed ID: 15020245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin.
    Carlisle HJ; Manzerra P; Marcora E; Kennedy MB
    J Neurosci; 2008 Dec; 28(50):13673-83. PubMed ID: 19074040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression.
    Horne EA; Dell'Acqua ML
    J Neurosci; 2007 Mar; 27(13):3523-34. PubMed ID: 17392468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IQGAP1 regulates NR2A signaling, spine density, and cognitive processes.
    Gao C; Frausto SF; Guedea AL; Tronson NC; Jovasevic V; Leaderbrand K; Corcoran KA; Guzmán YF; Swanson GT; Radulovic J
    J Neurosci; 2011 Jun; 31(23):8533-42. PubMed ID: 21653857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dynamic turnover and functional roles of alpha-actinin in dendritic spines.
    Nakagawa T; Engler JA; Sheng M
    Neuropharmacology; 2004 Oct; 47(5):734-45. PubMed ID: 15458845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Rare Variant Identified Within the GluN2B C-Terminus in a Patient with Autism Affects NMDA Receptor Surface Expression and Spine Density.
    Liu S; Zhou L; Yuan H; Vieira M; Sanz-Clemente A; Badger JD; Lu W; Traynelis SF; Roche KW
    J Neurosci; 2017 Apr; 37(15):4093-4102. PubMed ID: 28283559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid regulation of endoplasmic reticulum dynamics in dendritic spines by NMDA receptor activation.
    Ng AN; Doherty AJ; Lombroso PJ; Emptage NJ; Collingridge GL
    Mol Brain; 2014 Aug; 7():60. PubMed ID: 25242397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CaMKIIβ is localized in dendritic spines as both drebrin-dependent and drebrin-independent pools.
    Yamazaki H; Sasagawa Y; Yamamoto H; Bito H; Shirao T
    J Neurochem; 2018 Jul; 146(2):145-159. PubMed ID: 29675826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of dendritic spine morphology by the striatin scaffold protein STRN4 through interaction with the phosphatase PP2A.
    Lin L; Lo LH; Lyu Q; Lai KO
    J Biol Chem; 2017 Jun; 292(23):9451-9464. PubMed ID: 28442576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons.
    Rami G; Caillard O; Medina I; Pellegrino C; Fattoum A; Ben-Ari Y; Ferhat L
    Hippocampus; 2006; 16(2):183-97. PubMed ID: 16358313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of drebrin in dendritic spines.
    Koganezawa N; Hanamura K; Sekino Y; Shirao T
    Mol Cell Neurosci; 2017 Oct; 84():85-92. PubMed ID: 28161364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement.
    Merriam EB; Lumbard DC; Viesselmann C; Ballweg J; Stevenson M; Pietila L; Hu X; Dent EW
    PLoS One; 2011; 6(11):e27688. PubMed ID: 22096612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drebrin a content correlates with spine head size in the adult mouse cerebral cortex.
    Kobayashi C; Aoki C; Kojima N; Yamazaki H; Shirao T
    J Comp Neurol; 2007 Aug; 503(5):618-26. PubMed ID: 17559090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.
    Neuhoff H; Sassoè-Pognetto M; Panzanelli P; Maas C; Witke W; Kneussel M
    Eur J Neurosci; 2005 Jan; 21(1):15-25. PubMed ID: 15654839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites.
    Noguchi J; Matsuzaki M; Ellis-Davies GC; Kasai H
    Neuron; 2005 May; 46(4):609-22. PubMed ID: 15944129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1 h of Administration.
    Treccani G; Ardalan M; Chen F; Musazzi L; Popoli M; Wegener G; Nyengaard JR; Müller HK
    Mol Neurobiol; 2019 Nov; 56(11):7368-7379. PubMed ID: 31037646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.
    Pozzo-Miller LD; Inoue T; Murphy DD
    J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.