These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1622225)

  • 1. Mineralization of glucose and lignocellulose by four arctic freshwater sediments in response to nutrient enrichment.
    McKinley VL; Vestal JR
    Appl Environ Microbiol; 1992 May; 58(5):1554-63. PubMed ID: 1622225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation.
    Federle TW; Vestal JR
    Appl Environ Microbiol; 1980 Jul; 40(1):32-9. PubMed ID: 16345594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of petroleum hydrocarbons on plant litter microbiota in an arctic lake.
    McKinley VL; Federle TW; Vestal JR
    Appl Environ Microbiol; 1982 Jan; 43(1):129-35. PubMed ID: 16345915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens.
    Geurts JJ; Smolders AJ; Banach AM; van de Graaf JP; Roelofs JG; Lamers LP
    Water Res; 2010 Jun; 44(11):3487-95. PubMed ID: 20392472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm.
    Radosevich M; Traina SJ; Tuovinen OH
    Biodegradation; 1996 Apr; 7(2):137-49. PubMed ID: 8882806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic metabolism of immediate methane precursors in Lake Mendota.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralization pathways of organic matter deposited in a river-lake transition of the Rhone River Delta, Lake Geneva.
    Randlett ME; Sollberger S; Del Sontro T; Müller B; Corella JP; Wehrli B; Schubert CJ
    Environ Sci Process Impacts; 2015 Feb; 17(2):370-80. PubMed ID: 25503783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denitrification rates in the sediments of Lake Memphremagog, Canada-USA.
    Saunders DL; Kalff J
    Water Res; 2001 Jun; 35(8):1897-904. PubMed ID: 11337835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization of detrital lignocelluloses by salt marsh sediment microflora.
    Maccubbin AE; Hodson RE
    Appl Environ Microbiol; 1980 Oct; 40(4):735-40. PubMed ID: 16345647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.
    Forehead HI; Kendrick GA; Thompson PA
    FEMS Microbiol Ecol; 2012 Apr; 80(1):64-76. PubMed ID: 22133029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments.
    Smith RL; Oremland RS
    Appl Environ Microbiol; 1983 Jul; 46(1):106-13. PubMed ID: 16346332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Virginia.
    Boyer JN
    Appl Environ Microbiol; 1994 Jan; 60(1):174-9. PubMed ID: 8117075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries.
    Bauer JE; Capone DG
    Appl Environ Microbiol; 1988 Jul; 54(7):1649-55. PubMed ID: 3415231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.
    Bottino F; Cunha-Santino MB; Bianchini I
    Braz J Microbiol; 2016; 47(2):352-8. PubMed ID: 26991278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach.
    Rahalkar M; Schink B
    Appl Environ Microbiol; 2007 Jul; 73(13):4389-94. PubMed ID: 17483263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Acid on plant litter decomposition in an arctic lake.
    McKinley VL; Vestal JR
    Appl Environ Microbiol; 1982 May; 43(5):1188-95. PubMed ID: 16346015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt marsh and the Okefenokee Swamp.
    Benner R; Maccubbin AE; Hodson RE
    Microb Ecol; 1986 Sep; 12(3):291-8. PubMed ID: 24212682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microbial biomass and its correlations with carbon, nitrogen, and phosphorus in the sediments of Taihu Lake].
    Wang N; Xu DL; Guo X; Wu XQ; An SQ
    Ying Yong Sheng Tai Xue Bao; 2012 Jul; 23(7):1921-6. PubMed ID: 23173468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inventory of the benthic eukaryotic diversity in the oldest European lake.
    Wilden B; Traunspurger W; Geisen S
    Ecol Evol; 2021 Aug; 11(16):11207-11215. PubMed ID: 34429912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.