These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 16222293)

  • 1. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators.
    Hu RG; Sheng J; Qi X; Xu Z; Takahashi TT; Varshavsky A
    Nature; 2005 Oct; 437(7061):981-6. PubMed ID: 16222293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An essential role of N-terminal arginylation in cardiovascular development.
    Kwon YT; Kashina AS; Davydov IV; Hu RG; An JY; Seo JW; Du F; Varshavsky A
    Science; 2002 Jul; 297(5578):96-9. PubMed ID: 12098698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway.
    Lee MJ; Tasaki T; Moroi K; An JY; Kimura S; Davydov IV; Kwon YT
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15030-5. PubMed ID: 16217033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes.
    Lee MJ; Kim DE; Zakrzewska A; Yoo YD; Kim SH; Kim ST; Seo JW; Lee YS; Dorn GW; Oh U; Kim BY; Kwon YT
    J Biol Chem; 2012 Jul; 287(28):24043-52. PubMed ID: 22577142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets.
    White MD; Klecker M; Hopkinson RJ; Weits DA; Mueller C; Naumann C; O'Neill R; Wickens J; Yang J; Brooks-Bartlett JC; Garman EF; Grossmann TN; Dissmeyer N; Flashman E
    Nat Commun; 2017 Mar; 8():14690. PubMed ID: 28332493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates.
    Rai R; Kashina A
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10123-8. PubMed ID: 16002466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-end rule pathway is a sensor of heme.
    Hu RG; Wang H; Xia Z; Varshavsky A
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):76-81. PubMed ID: 18162538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS4 is arginylated and degraded by the N-end rule pathway in vitro.
    Davydov IV; Varshavsky A
    J Biol Chem; 2000 Jul; 275(30):22931-41. PubMed ID: 10783390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway.
    Kwon YT; Kashina AS; Varshavsky A
    Mol Cell Biol; 1999 Jan; 19(1):182-93. PubMed ID: 9858543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational arginylation and intracellular proteolysis.
    Bohley P; Kopitz J; Adam G; Rist B; von Appen F; Urban S
    Biomed Biochim Acta; 1991; 50(4-6):343-6. PubMed ID: 1801699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginylation of beta-actin regulates actin cytoskeleton and cell motility.
    Karakozova M; Kozak M; Wong CC; Bailey AO; Yates JR; Mogilner A; Zebroski H; Kashina A
    Science; 2006 Jul; 313(5784):192-6. PubMed ID: 16794040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ablation of Arg-tRNA-protein transferases results in defective neural tube development.
    Kim E; Kim S; Lee JH; Kwon YT; Lee MJ
    BMB Rep; 2016 Aug; 49(8):443-8. PubMed ID: 27345715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.
    Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A
    J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations.
    Brower CS; Varshavsky A
    PLoS One; 2009 Nov; 4(11):e7757. PubMed ID: 19915679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
    Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
    Yoo YD; Mun SR; Ji CH; Sung KW; Kang KY; Heo AJ; Lee SH; An JY; Hwang J; Xie XQ; Ciechanover A; Kim BY; Kwon YT
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2716-E2724. PubMed ID: 29507222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying Arginylation for Bottom-Up Proteomics.
    Ebhardt HA
    Methods Mol Biol; 2015; 1337():129-38. PubMed ID: 26285889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification and characterisation of a functional interaction between arginyl-tRNA-protein transferase and topoisomerase II.
    Barker CR; Mouchel NA; Jenkins JR
    Biochem Biophys Res Commun; 2006 Apr; 342(2):596-604. PubMed ID: 16488395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.