These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16222500)

  • 21. Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR).
    Kurian R; Nakhla G; Bassi A
    Chemosphere; 2006 Nov; 65(7):1204-11. PubMed ID: 16697028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on biomethonization of waste water from jam industries.
    Mohan S; Sunny N
    Bioresour Technol; 2008 Jan; 99(1):210-3. PubMed ID: 17275291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater.
    Srivastava NK; Majumder CB
    J Hazard Mater; 2008 Feb; 151(1):1-8. PubMed ID: 17997034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil.
    Malaviya P; Rathore VS
    Bioresour Technol; 2007 Dec; 98(18):3647-51. PubMed ID: 17208440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal ball. The roots of the "species" concept must be quantified.
    Kuenen JG
    Environ Microbiol; 2005 Apr; 7(4):476-7. PubMed ID: 15816917
    [No Abstract]   [Full Text] [Related]  

  • 26. An eco-compatible process for the depuration of wastewater from olive mill industry.
    Ena A; Pintucci C; Faraloni C; Torzillo G
    Water Sci Technol; 2009; 60(4):1055-63. PubMed ID: 19700845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic biodegradation of sterols contained in kraft mill effluents.
    Vidal G; Becerra J; Hernández V; Decap J; Xavier CR
    J Biosci Bioeng; 2007 Dec; 104(6):476-80. PubMed ID: 18215634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.
    Inizan M; Freval A; Cigana J; Meinhold J
    Water Sci Technol; 2005; 52(10-11):335-43. PubMed ID: 16459808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Use of ozone for final purification of industrial effluents following biological purification].
    Gracheva MP; Shkodich PE; Tregubov BA; Tikhomirov IuP; Filiukova TV
    Gig Sanit; 1974 Dec; (12):90-1. PubMed ID: 4442748
    [No Abstract]   [Full Text] [Related]  

  • 31. Preliminary study of physico-chemical treatment options for hospital wastewater.
    Gautam AK; Kumar S; Sabumon PC
    J Environ Manage; 2007 May; 83(3):298-306. PubMed ID: 16824671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation and decolorization of monosodium glutamate wastewater with Coriolus versicolor.
    Jia C; Kang R; Zhang Y; Zhang Y; Cong W
    Biodegradation; 2007 Oct; 18(5):551-7. PubMed ID: 17146613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose.
    Park JY; Yoo YJ
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):415-29. PubMed ID: 19148639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of anionic and nonionic surfactants on the kinetics of the aerobic heterotrophic biodegradation of organic matter in industrial wastewater.
    Liwarska-Bizukojc E; Scheumann R; Drews A; Bracklow U; Kraume M
    Water Res; 2008 Feb; 42(4-5):923-30. PubMed ID: 17931681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treatment of industrial wastewater using photooxidation and bioaugmentation technology.
    Pandya MT
    Water Sci Technol; 2007; 56(7):117-24. PubMed ID: 17951875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater.
    Silva MR; Coelho MA; Cammarota MC
    J Hazard Mater; 2008 Jan; 150(2):438-45. PubMed ID: 17583427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.
    Lai P; Zhao HZ; Wang C; Ni JR
    J Hazard Mater; 2007 Aug; 147(1-2):232-9. PubMed ID: 17267104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater.
    Yu L; Liu Y; Wang G
    Biodegradation; 2009 Jun; 20(3):391-400. PubMed ID: 19002594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated biological (anaerobic-aerobic) and physico-chemical treatment of baker's yeast wastewater.
    Kalyuzhnyi S; Gladchenko M; Starostina E; Shcherbakov S; Versprille B
    Water Sci Technol; 2005; 52(10-11):273-80. PubMed ID: 16459801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.