BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 16222531)

  • 41. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.
    Ishida Y; Nguyen TTM; Izawa S
    J Biotechnol; 2017 Jun; 252():65-72. PubMed ID: 28458045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation.
    Hector RE; Bowman MJ; Skory CD; Cotta MA
    N Biotechnol; 2009 Oct; 26(3-4):171-80. PubMed ID: 19712762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    Heer D; Heine D; Sauer U
    Appl Environ Microbiol; 2009 Dec; 75(24):7631-8. PubMed ID: 19854918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.
    Unrean P
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):611-623. PubMed ID: 28025701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    Wahlbom CF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2002 Apr; 78(2):172-8. PubMed ID: 11870608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Forced expression of FLO11 confers pellicle-forming ability and furfural tolerance on Saccharomyces cerevisiae in ethanol production.
    Nakagawa Y; Hasebe T; Ishiai M; Yamamura H; Iimura Y; Hayakawa M
    Biosci Biotechnol Biochem; 2014; 78(4):714-7. PubMed ID: 25036972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.
    Vianna CR; Ferreira MC; Silva CL; Tanghe A; Neves MJ; Thevelein JM; Rosa CA; Van Dijck P
    J Mol Microbiol Biotechnol; 2010; 19(3):140-6. PubMed ID: 20924200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production.
    Kobayashi Y; Sahara T; Suzuki T; Kamachi S; Matsushika A; Hoshino T; Ohgiya S; Kamagata Y; Fujimori KE
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):879-891. PubMed ID: 28181081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Ando A; Nakamura T; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae.
    Laadan B; Almeida JR; Rådström P; Hahn-Hägerdal B; Gorwa-Grauslund M
    Yeast; 2008 Mar; 25(3):191-8. PubMed ID: 18302314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.