These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1622258)

  • 41. Assessment of the ready biodegradability of Bisphenol A.
    West RJ; Goodwin PA; Klecka GM
    Bull Environ Contam Toxicol; 2001 Jul; 67(1):106-12. PubMed ID: 11381319
    [No Abstract]   [Full Text] [Related]  

  • 42. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model.
    Mohapatra DP; Brar SK; Tyagi RD; Surampalli RY
    J Hazard Mater; 2011 May; 189(1-2):100-7. PubMed ID: 21354701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of bisphenol A by cultured cells of Caragana chamlagu.
    Chai W; Sakamaki H; Kitanaka S; Saito M; Horiuchi CA
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):218-20. PubMed ID: 12619702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water.
    Frankowski R; Płatkiewicz J; Stanisz E; Grześkowiak T; Zgoła-Grześkowiak A
    Environ Pollut; 2021 Nov; 289():117947. PubMed ID: 34391047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial degradation of glycol ethers.
    Kawai F
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):532-8. PubMed ID: 8597556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls].
    Rybkina DO; Plotnikova EG; Dorofeeva LV; Mironenko IuL; Demakov VA
    Mikrobiologiia; 2003; 72(6):759-65. PubMed ID: 14768541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Sorption behavior of bisphenol A on anaerobic sludge].
    Zhao JM; Li YM; Zhou Q; Zhang CJ; Zeng QL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1681-6. PubMed ID: 18763523
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bisphenol a degradation by bacteria isolated from river water.
    Kang JH; Kondo F
    Arch Environ Contam Toxicol; 2002 Oct; 43(3):265-9. PubMed ID: 12202920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis - a structure-biotransformation relationship.
    Zühlke MK; Schlüter R; Mikolasch A; Henning AK; Giersberg M; Lalk M; Kunze G; Schweder T; Urich T; Schauer F
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3569-3583. PubMed ID: 32125477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC.
    Song Z; Edwards SR; Burns RG
    Biodegradation; 2005 Jun; 16(3):237-52. PubMed ID: 15865148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous biodegradation of bisphenol A and a biogenic substrate in semi-continuous activated sludge reactors.
    Ferro Orozco AM; Contreras EM; Zaritzky NE
    Biodegradation; 2015 Jun; 26(3):183-95. PubMed ID: 25808931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary alpha-carbon structure in the para position?
    Kolvenbach B; Schlaich N; Raoui Z; Prell J; Zühlke S; Schäffer A; Guengerich FP; Corvini PF
    Appl Environ Microbiol; 2007 Aug; 73(15):4776-84. PubMed ID: 17557840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling as a tool when interpreting biodegradation of micro pollutants in activated sludge systems.
    Press-Kristensen K; Lindblom E; Henze M
    Water Sci Technol; 2007; 56(11):11-6. PubMed ID: 18057636
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerobic degradation of bisphenol-A and its derivatives in river sediment.
    Chang BV; Liu JH; Liao CS
    Environ Technol; 2014; 35(1-4):416-24. PubMed ID: 24600882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus.
    Hirano T; Honda Y; Watanabe T; Kuwahara M
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1958-62. PubMed ID: 11055402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics and biotransformation products of bisphenol F and S during aerobic degradation with activated sludge.
    Kovačič A; Gys C; Gulin MR; Gornik T; Kosjek T; Heath D; Covaci A; Heath E
    J Hazard Mater; 2021 Feb; 404(Pt A):124079. PubMed ID: 33017711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of bisphenol A using sonochemical reactions.
    Inoue M; Masuda Y; Okada F; Sakurai A; Takahashi I; Sakakibara M
    Water Res; 2008 Mar; 42(6-7):1379-86. PubMed ID: 17976685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source.
    Kim S; Picardal F
    Appl Environ Microbiol; 2001 Apr; 67(4):1953-5. PubMed ID: 11282655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Operation of fill-and-draw reactors fed with bisphenol A as sole carbon and energy source.
    Dionisi D; Erekaife B; Maclean J
    Water Environ Res; 2014 Nov; 86(11):2194-201. PubMed ID: 25509524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.
    Nakajima-Kambe T; Onuma F; Kimpara N; Nakahara T
    FEMS Microbiol Lett; 1995 Jun; 129(1):39-42. PubMed ID: 7781989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.