These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 16222696)
21. Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Anada T; Kumagai T; Honda Y; Masuda T; Kamijo R; Kamakura S; Yoshihara N; Kuriyagawa T; Shimauchi H; Suzuki O Tissue Eng Part A; 2008 Jun; 14(6):965-78. PubMed ID: 19230123 [TBL] [Abstract][Full Text] [Related]
22. Comparison of bone regeneration between octacalcium phosphate/collagen composite and β-tricalcium phosphate in canine calvarial defect. Tanuma Y; Matsui K; Kawai T; Matsui A; Suzuki O; Kamakura S; Echigo S Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Jan; 115(1):9-17. PubMed ID: 22901651 [TBL] [Abstract][Full Text] [Related]
23. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. Yang C; Unursaikhan O; Lee JS; Jung UW; Kim CS; Choi SH J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):80-8. PubMed ID: 23852942 [TBL] [Abstract][Full Text] [Related]
24. Thermal conversion of octacalcium phosphate into hydroxyapatite. Bigi A; Cojazzi G; Gazzano M; Ripamonti A; Roveri N J Inorg Biochem; 1990 Dec; 40(4):293-9. PubMed ID: 1964955 [TBL] [Abstract][Full Text] [Related]
25. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates. Shiwaku Y; Anada T; Yamazaki H; Honda Y; Morimoto S; Sasaki K; Suzuki O Acta Biomater; 2012 Dec; 8(12):4417-25. PubMed ID: 22868193 [TBL] [Abstract][Full Text] [Related]
26. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Suzuki O; Kamakura S; Katagiri T; Nakamura M; Zhao B; Honda Y; Kamijo R Biomaterials; 2006 May; 27(13):2671-81. PubMed ID: 16413054 [TBL] [Abstract][Full Text] [Related]
27. Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate. Kobayashi K; Anada T; Handa T; Kanda N; Yoshinari M; Takahashi T; Suzuki O ACS Appl Mater Interfaces; 2014 Dec; 6(24):22602-11. PubMed ID: 25478703 [TBL] [Abstract][Full Text] [Related]
28. The effect of microstructure of octacalcium phosphate on the bone regenerative property. Honda Y; Anada T; Kamakura S; Morimoto S; Kuriyagawa T; Suzuki O Tissue Eng Part A; 2009 Aug; 15(8):1965-73. PubMed ID: 19132890 [TBL] [Abstract][Full Text] [Related]
29. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J; Ran J; Gou L; Wang F; Sun L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425 [TBL] [Abstract][Full Text] [Related]
30. Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. Kamakura S; Sasaki K; Honda Y; Anada T; Suzuki O J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):210-7. PubMed ID: 16615073 [TBL] [Abstract][Full Text] [Related]
31. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
32. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair. Liu J; Liao J; Li Y; Yang Z; Ying Q; Xie Y; Zhou A J Biomater Appl; 2019 Aug; 34(2):239-249. PubMed ID: 31042122 [No Abstract] [Full Text] [Related]
33. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Sai Y; Shiwaku Y; Anada T; Tsuchiya K; Takahashi T; Suzuki O Acta Biomater; 2018 Mar; 69():362-371. PubMed ID: 29378325 [TBL] [Abstract][Full Text] [Related]
34. Conversion of octacalcium phosphate in calcium phosphate cements. De Maeyer EA; Verbeeck RM; Vercruysse CW J Biomed Mater Res; 2000 Oct; 52(1):95-106. PubMed ID: 10906679 [TBL] [Abstract][Full Text] [Related]
35. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain. Rey C; Shimizu M; Collins B; Glimcher MJ Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326 [TBL] [Abstract][Full Text] [Related]
36. TEM study of calcium phosphate precipitation on HA/TCP ceramics. Leng Y; Chen J; Qu S Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Schmidlin PR; Nicholls F; Kruse A; Zwahlen RA; Weber FE Clin Oral Implants Res; 2013 Feb; 24(2):149-57. PubMed ID: 22092691 [TBL] [Abstract][Full Text] [Related]
38. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541 [TBL] [Abstract][Full Text] [Related]
39. Preparation and characterization of porous alginate scaffolds containing various amounts of octacalcium phosphate (OCP) crystals. Shiraishi N; Anada T; Honda Y; Masuda T; Sasaki K; Suzuki O J Mater Sci Mater Med; 2010 Mar; 21(3):907-14. PubMed ID: 19851838 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]