These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1622279)

  • 1. 1,3-Propanediol:NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri.
    Veiga-da-Cunha M; Foster MA
    Appl Environ Microbiol; 1992 Jun; 58(6):2005-10. PubMed ID: 1622279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.
    Veiga da Cunha M; Foster MA
    J Bacteriol; 1992 Feb; 174(3):1013-9. PubMed ID: 1732191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Klebsiella pneumoniae 1,3-propanediol:NAD+ oxidoreductase.
    Johnson EA; Lin EC
    J Bacteriol; 1987 May; 169(5):2050-4. PubMed ID: 3553154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210.
    Barbirato F; Larguier A; Conte T; Astruc S; Bories A
    Arch Microbiol; 1997 Aug; 168(2):160-3. PubMed ID: 9238108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli.
    Daniel R; Boenigk R; Gottschalk G
    J Bacteriol; 1995 Apr; 177(8):2151-6. PubMed ID: 7721705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
    Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R
    PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D.
    Malaoui H; Marczak R
    J Appl Microbiol; 2001 Jun; 90(6):1006-14. PubMed ID: 11412332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations.
    Johnson EA; Levine RL; Lin EC
    J Bacteriol; 1985 Oct; 164(1):479-83. PubMed ID: 3900046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetic mechanisms of glycerol dehydrogenase and 1,3-propanediol oxidoreductase from Klebsiella pneumoniae].
    Chen H; Nie J; Chen G; Fang B
    Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):177-82. PubMed ID: 20432935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,3-Propanediol dehydrogenase from Klebsiella pneumoniae: decameric quaternary structure and possible subunit cooperativity.
    Marçal D; Rêgo AT; Carrondo MA; Enguita FJ
    J Bacteriol; 2009 Feb; 191(4):1143-51. PubMed ID: 19011020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol.
    Zhuge B; Zhang C; Fang H; Zhuge J; Permaul K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2177-84. PubMed ID: 20499228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol.
    Luo LH; Seo JW; Baek JO; Oh BR; Heo SY; Hong WK; Kim DH; Kim CH
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):697-703. PubMed ID: 20890600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and sequence analysis of the dhaT gene of the 1,3-propanediol regulon from Klebsiella pneumoniae.
    Yuanyuan Z; Yang C; Baishan F
    Biotechnol Lett; 2004 Feb; 26(3):251-5. PubMed ID: 15049372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation.
    Ahrens K; Menzel K; Zeng A; Deckwer W
    Biotechnol Bioeng; 1998 Sep; 59(5):544-52. PubMed ID: 10099370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431.
    Abbad-Andaloussi S; Amine J; Gerard P; Petitdemange H
    J Appl Microbiol; 1998 Apr; 84(4):515-22. PubMed ID: 9633649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine.
    Pasteris SE; Strasser de Saad AM
    J Agric Food Chem; 2009 May; 57(9):3853-8. PubMed ID: 19323470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of histidinol dehydrogenase from Escherichia coli B.
    Andorn N; Aronovitch J
    J Gen Microbiol; 1982 Mar; 128(3):579-84. PubMed ID: 7042909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The isolation and characterization of a 1,2-propanediol oxidoreductase from Neisseria gonorrhoeae.
    McDonald HC; Takeguchi MM; Detar CC; Simon PA; Livsey KA; Odstrchel G; Kaplan NO; Weetall HH
    J Gen Microbiol; 1980 Aug; 119(2):451-8. PubMed ID: 6785379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    J Appl Microbiol; 2013 Oct; 115(4):1003-11. PubMed ID: 23795775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.