BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16222863)

  • 1. Modeling the electrophoretic mobility of analytes in binary solvent electrolyte systems in capillary electrophoresis using an artificial neural network.
    Jouyban A; Majidi MR; Altria KD; Clark BJ; Asadpour-Zeynali K
    Pharmazie; 2005 Sep; 60(9):656-60. PubMed ID: 16222863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the electrophoretic mobility of beta-blockers in capillary electrophoresis using artificial neural networks.
    Jouyban A; Majidi MR; Asadpour-Zeynali K
    Farmaco; 2005 Mar; 60(3):255-9. PubMed ID: 15784246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different algorithms to calculate electrophoretic mobility of analytes as a function of binary solvent composition.
    Jouyban A; Chan HK; Clark BJ; Kenndler E
    Electrophoresis; 2003 May; 24(10):1596-602. PubMed ID: 12761789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure property relationship study of the electrophoretic mobilities of some benzoic acids derivatives in different carrier electrolyte compositions.
    Fatemi MH; Goudarzi N
    Electrophoresis; 2005 Aug; 26(15):2968-73. PubMed ID: 16007694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic behavior of alprenolol in mixed solvent electrolyte systems.
    Jouyban A; Khoubnasabjafari M; Yeghanli S; Grosse SC; Clark BJ
    Farmaco; 2003 Oct; 58(10):1039-44. PubMed ID: 14505736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of electrophoretic mobility in mixed solvent buffers in capillary zone electrophoresis using a mixture response surface method.
    Jouyban A; Grosse SC; Coleman MW; Chan HK; Kenndler E; Clark BJ
    Analyst; 2002 Sep; 127(9):1188-92. PubMed ID: 12375841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    J Chromatogr A; 2005 Nov; 1096(1-2):58-68. PubMed ID: 16216258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two variable semi-empirical and artificial neural-network-based modeling of peptide mobilities in CZE: the effect of temperature and organic modifier concentration.
    Mittermayr S; Chovan T; Guttman A
    Electrophoresis; 2009 Mar; 30(5):890-6. PubMed ID: 19197908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods.
    Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B
    Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the separation of organic explosives by capillary electrophoresis with artificial neural networks.
    Casamento S; Kwok B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2003 Sep; 48(5):1075-83. PubMed ID: 14535670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical representation of electrophoretic mobility of basic drugs in ternary solvent buffers in capillary zone electrophoresis.
    Jouyban A; Grosse SC; Chan HK; Coleman MW; Clark BJ
    J Chromatogr A; 2003 Apr; 994(1-2):191-8. PubMed ID: 12779229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of mixture-of-experts networks for binary classification of hierarchical data.
    Ng SK; McLachlan GJ
    Artif Intell Med; 2007 Sep; 41(1):57-67. PubMed ID: 17629686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility prediction of salicylic acid in water-ethanol-propylene glycol mixtures using the Jouyban-Acree model.
    Jouyban A; Chew NY; Chan HK; Khoubnasabjafari M; Acree WE
    Pharmazie; 2006 Apr; 61(4):318-21. PubMed ID: 16649546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks for modeling electrophoretic mobilities of inorganic cations and organic cationic oximes used as antidote contra nerve paralytic chemical weapons.
    Malovaná S; Frías-García S; Havel J
    Electrophoresis; 2002 Jun; 23(12):1815-21. PubMed ID: 12116124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility prediction of drugs in water-cosolvent mixtures using Abraham solvation parameters.
    Jouyban A; Soltanpour Sh; Soltani S; Chan HK; Acree WE
    J Pharm Pharm Sci; 2007; 10(3):263-77. PubMed ID: 17727790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146.
    Singh A; Majumder A; Goyal A
    Bioresour Technol; 2008 Nov; 99(17):8201-6. PubMed ID: 18440808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network explanation using inversion.
    Saad EW; Wunsch DC
    Neural Netw; 2007 Jan; 20(1):78-93. PubMed ID: 17029713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.