These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 16223261)
1. Amperometric biosensing systems based on motility and gravitaxis of flagellate algae for aquatic risk assessment. Shitanda I; Takada K; Sakai Y; Tatsuma T Anal Chem; 2005 Oct; 77(20):6715-8. PubMed ID: 16223261 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical system for the simultaneous monitoring of algal motility and phototaxis. Shitanda I; Tatsuma T Anal Chem; 2006 Jan; 78(1):349-53. PubMed ID: 16383348 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical monitoring systems of demembranated flagellate algal motility for ATP sensing. Shitanda I; Tanaka K; Hoshi Y; Itagaki M Analyst; 2014 Feb; 139(4):721-3. PubMed ID: 24336166 [TBL] [Abstract][Full Text] [Related]
4. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
5. Gravitaxis in Chlamydomonas reinhardtii studied with novel mutants. Yoshimura K; Matsuo Y; Kamiya R Plant Cell Physiol; 2003 Oct; 44(10):1112-8. PubMed ID: 14581636 [TBL] [Abstract][Full Text] [Related]
6. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Lu LM; Zhang L; Qu FL; Lu HX; Zhang XB; Wu ZS; Huan SY; Wang QA; Shen GL; Yu RQ Biosens Bioelectron; 2009 Sep; 25(1):218-23. PubMed ID: 19632823 [TBL] [Abstract][Full Text] [Related]
7. Gravitaxis in Chlamydomonas reinhardtii: characterization using video microscopy and computer analysis. Kam V; Moseyko N; Nemson J; Feldman LJ Int J Plant Sci; 1999 Nov; 160(6):1093-8. PubMed ID: 10568776 [TBL] [Abstract][Full Text] [Related]
8. Optical biosensors for environmental monitoring based on computational and biotechnological tools for engineering the photosynthetic D1 protein of Chlamydomonas reinhardtii. Giardi MT; Scognamiglio V; Rea G; Rodio G; Antonacci A; Lambreva M; Pezzotti G; Johanningmeier U Biosens Bioelectron; 2009 Oct; 25(2):294-300. PubMed ID: 19674888 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Goral VN; Zaytseva NV; Baeumner AJ Lab Chip; 2006 Mar; 6(3):414-21. PubMed ID: 16511625 [TBL] [Abstract][Full Text] [Related]
10. DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Gu T; Hasebe Y Biosens Bioelectron; 2006 May; 21(11):2121-8. PubMed ID: 16297613 [TBL] [Abstract][Full Text] [Related]
11. Calcium-dependent flagellar motility activation in Chlamydomonas reinhardtii in response to mechanical agitation. Wakabayashi K; Ide T; Kamiya R Cell Motil Cytoskeleton; 2009 Sep; 66(9):736-42. PubMed ID: 19544401 [TBL] [Abstract][Full Text] [Related]
12. New platform of biosensors for prescreening of pesticide residues to support laboratory analyses. Buonasera K; Pezzotti G; Scognamiglio V; Tibuzzi A; Giardi MT J Agric Food Chem; 2010 May; 58(10):5982-90. PubMed ID: 20020685 [TBL] [Abstract][Full Text] [Related]
13. Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Geoffroy L; Gilbin R; Simon O; Floriani M; Adam C; Pradines C; Cournac L; Garnier-Laplace J Aquat Toxicol; 2007 Jun; 83(2):149-58. PubMed ID: 17507103 [TBL] [Abstract][Full Text] [Related]
14. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Mousty C; Vieille L; Cosnier S Biosens Bioelectron; 2007 Mar; 22(8):1733-8. PubMed ID: 17023155 [TBL] [Abstract][Full Text] [Related]
15. Gravitaxis in the flagellate Euglena gracilis--results from NiZeMi, clinostat and sounding rocket flights. Häder DP J Gravit Physiol; 1994 May; 1(1):P82-4. PubMed ID: 11538775 [TBL] [Abstract][Full Text] [Related]
16. A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Ai H; Huang X; Zhu Z; Liu J; Chi Q; Li Y; Li Z; Ji X Biosens Bioelectron; 2008 Dec; 24(4):1054-8. PubMed ID: 18782662 [TBL] [Abstract][Full Text] [Related]
17. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Millán de Kuhn R; Streb C; Breiter R; Richter P; Neesse T; Häder DP Water Res; 2006 Aug; 40(14):2695-703. PubMed ID: 16806394 [TBL] [Abstract][Full Text] [Related]
18. A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose. Barsan MM; Brett CM Bioelectrochemistry; 2009 Sep; 76(1-2):135-40. PubMed ID: 19349215 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. Hrbác J; Gregor C; Machová M; Králová J; Bystron T; Cíz M; Lojek A Bioelectrochemistry; 2007 Sep; 71(1):46-53. PubMed ID: 17084679 [TBL] [Abstract][Full Text] [Related]