These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 16223519)
41. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Han FX; Su Y; Monts DL; Waggoner CA; Plodinec MJ Sci Total Environ; 2006 Sep; 368(2-3):753-68. PubMed ID: 16569422 [TBL] [Abstract][Full Text] [Related]
42. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. Llanos W; Kocman D; Higueras P; Horvat M J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967 [TBL] [Abstract][Full Text] [Related]
43. Use of iodide to enhance the phytoextraction of mercury-contaminated soil. Wang Y; Greger M Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348 [TBL] [Abstract][Full Text] [Related]
44. High altitude artisanal small-scale gold mines are hot spots for Mercury in soils and plants. Terán-Mita TA; Faz A; Salvador F; Arocena JM; Acosta JA Environ Pollut; 2013 Feb; 173():103-9. PubMed ID: 23202639 [TBL] [Abstract][Full Text] [Related]
45. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Lei K; Giubilato E; Critto A; Pan H; Lin C Environ Sci Pollut Res Int; 2016 Jul; 23(13):13128-36. PubMed ID: 27000119 [TBL] [Abstract][Full Text] [Related]
46. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies. Wang SX; Song JX; Li GH; Wu Y; Zhang L; Wan Q; Streets DG; Chin CK; Hao JM Environ Pollut; 2010 Oct; 158(10):3347-53. PubMed ID: 20716469 [TBL] [Abstract][Full Text] [Related]
47. Biosensors for detection of mercury in contaminated soils. Bontidean I; Mortari A; Leth S; Brown NL; Karlson U; Larsen MM; Vangronsveld J; Corbisier P; Csöregi E Environ Pollut; 2004 Sep; 131(2):255-62. PubMed ID: 15234092 [TBL] [Abstract][Full Text] [Related]
48. Mercury emission to atmosphere from primary Zn production in China. Li G; Feng X; Li Z; Qiu G; Shang L; Liang P; Wang D; Yang Y Sci Total Environ; 2010 Sep; 408(20):4607-12. PubMed ID: 20655573 [TBL] [Abstract][Full Text] [Related]
49. [Evaluation of phytoavailability of zinc and cadmium in contaminated soils by a short sequential extraction procedure]. Bi XY; Yang YG; Feng XB; Li FL; Sun L Huan Jing Ke Xue; 2006 Apr; 27(4):770-4. PubMed ID: 16768004 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, Pará State, Brazil. Egler SG; Rodrigues-Filho S; Villas-Bôas RC; Beinhoff C Sci Total Environ; 2006 Sep; 368(1):424-33. PubMed ID: 16236346 [TBL] [Abstract][Full Text] [Related]
51. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. Meng B; Feng X; Qiu G; Cai Y; Wang D; Li P; Shang L; Sommar J J Agric Food Chem; 2010 Apr; 58(8):4951-8. PubMed ID: 20369851 [TBL] [Abstract][Full Text] [Related]
52. Effects of mercury released from gold extraction by amalgamation on renal function and environment in Shanxi, China. Tian L; Guo HF; Gao A; Lu XT; Li QY Bull Environ Contam Toxicol; 2009 Jul; 83(1):71-4. PubMed ID: 19387524 [TBL] [Abstract][Full Text] [Related]
53. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711 [TBL] [Abstract][Full Text] [Related]
54. Heavy metals in an impacted wetland system: a typical case from southwestern China. Bi X; Feng X; Yang Y; Li X; Sin GP; Qiu G; Qian X; Li F; He T; Li P; Liu T; Fu Z Sci Total Environ; 2007 Nov; 387(1-3):257-68. PubMed ID: 17822743 [TBL] [Abstract][Full Text] [Related]
55. Mercury exposures and symptoms in smelting workers of artisanal mercury mines in Wuchuan, Guizhou, China. Li P; Feng X; Qiu G; Li Z; Fu X; Sakamoto M; Liu X; Wang D Environ Res; 2008 May; 107(1):108-14. PubMed ID: 17897640 [TBL] [Abstract][Full Text] [Related]
56. Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: implications for industrial and domestic mercury emissions in remote areas in China. Fu X; Feng X; Wang S; Rothenberg S; Shang L; Li Z; Qiu G Sci Total Environ; 2009 Mar; 407(7):2306-14. PubMed ID: 19138788 [TBL] [Abstract][Full Text] [Related]
57. Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil. Zhao T; Yu Z; Zhang J; Qu L; Li P Environ Sci Pollut Res Int; 2018 Aug; 25(24):24135-24142. PubMed ID: 29948692 [TBL] [Abstract][Full Text] [Related]
58. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
59. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China. Peng Y; Chen J; Wei H; Li S; Jin T; Yang R Ecotoxicol Environ Saf; 2018 May; 152():24-32. PubMed ID: 29367113 [TBL] [Abstract][Full Text] [Related]
60. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil. Almeida MD; Lacerda LD; Bastos WR; Herrmann JC Environ Pollut; 2005 Sep; 137(2):179-86. PubMed ID: 15885862 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]