BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16223531)

  • 21. Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance.
    Tan LJ; Kennedy MK; Dal Canto MC; Miller SD
    J Immunol; 1991 Sep; 147(6):1797-802. PubMed ID: 1716280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Converting relapsing remitting to secondary progressive experimental allergic encephalomyelitis (EAE) by ultraviolet B irradiation.
    Tsunoda I; Kuang LQ; Igenge IZ; Fujinami RS
    J Neuroimmunol; 2005 Mar; 160(1-2):122-34. PubMed ID: 15710465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autoimmunity against myelin oligodendrocyte glycoprotein is dispensable for the initiation although essential for the progression of chronic encephalomyelitis in common marmosets.
    Jagessar SA; Smith PA; Blezer E; Delarasse C; Pham-Dinh D; Laman JD; Bauer J; Amor S; 't Hart B
    J Neuropathol Exp Neurol; 2008 Apr; 67(4):326-40. PubMed ID: 18379435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential cytokine and chemokine production characterizes experimental autoimmune meningitis and experimental autoimmune encephalomyelitis.
    Perrin PJ; Rumbley CA; Beswick RL; Lavi E; Phillips SM
    Clin Immunol; 2000 Feb; 94(2):114-24. PubMed ID: 10637096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease.
    Schluesener HJ; Sobel RA; Linington C; Weiner HL
    J Immunol; 1987 Dec; 139(12):4016-21. PubMed ID: 3500978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic neurologic dysfunction and demyelination induced in Lewis rats by repeated injections of encephalitogenic T-lymphocyte lines.
    Vandenbark AA; Nilaver G; Konat G; Teal P; Offner H
    J Neurosci Res; 1986; 16(4):643-56. PubMed ID: 2432277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of chemokine genes in rat glial cells: the effect of myelin basic protein-reactive encephalitogenic T cells.
    Sun D; Hu X; Liu X; Whitaker JN; Walker WS
    J Neurosci Res; 1997 May; 48(3):192-200. PubMed ID: 9160242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1.
    Archelos JJ; Jung S; Mäurer M; Schmied M; Lassmann H; Tamatani T; Miyasaka M; Toyka KV; Hartung HP
    Ann Neurol; 1993 Aug; 34(2):145-54. PubMed ID: 7687838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevention of murine experimental autoimmune encephalomyelitis by in vivo expression of a novel recombinant immunotoxin DT390-RANTES.
    Jia Y; Li H; Chen W; Li M; Lv M; Feng P; Hu H; Zhang L
    Gene Ther; 2006 Sep; 13(18):1351-9. PubMed ID: 16708076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IFN-gamma regulates murine interferon-inducible T cell alpha chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis (EAE).
    Hamilton NH; Banyer JL; Hapel AJ; Mahalingam S; Ramsay AJ; Ramshaw IA; Thomson SA
    Scand J Immunol; 2002 Feb; 55(2):171-7. PubMed ID: 11896933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrathecal administration of neutralizing antibody against Fas ligand suppresses the progression of experimental autoimmune encephalomyelitis.
    Okuda Y; Sakoda S; Fujimura H; Nagata S; Yanagihara T; Bernard CC
    Biochem Biophys Res Commun; 2000 Aug; 275(1):164-8. PubMed ID: 10944459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Successful prevention and treatment of autoimmune encephalomyelitis by short-term administration of anti-T-cell receptor alpha beta antibody.
    Matsumoto Y; Tsuchida M; Hanawa H; Abo T
    Immunology; 1994 Jan; 81(1):1-7. PubMed ID: 7510661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CXCR3 blockade inhibits T-cell migration into the CNS during EAE and prevents development of adoptively transferred, but not actively induced, disease.
    Sporici R; Issekutz TB
    Eur J Immunol; 2010 Oct; 40(10):2751-61. PubMed ID: 21038468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CD8+ phagocyte recruitment in rat experimental autoimmune encephalomyelitis: association with inflammatory tissue destruction.
    Schroeter M; Stoll G; Weissert R; Hartung HP; Lassmann H; Jander S
    Am J Pathol; 2003 Oct; 163(4):1517-24. PubMed ID: 14507658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis.
    Serafini B; Columba-Cabezas S; Di Rosa F; Aloisi F
    Am J Pathol; 2000 Dec; 157(6):1991-2002. PubMed ID: 11106572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental autoimmune encephalomyelitis (EAE) in CCR2(-/-) mice: susceptibility in multiple strains.
    Gaupp S; Pitt D; Kuziel WA; Cannella B; Raine CS
    Am J Pathol; 2003 Jan; 162(1):139-50. PubMed ID: 12507897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of acute versus chronic relapsing autoimmune encephalomyelitis in DA rats.
    Tanuma N; Shin T; Matsumoto Y
    J Neuroimmunol; 2000 Aug; 108(1-2):171-80. PubMed ID: 10900351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis.
    Glabinski AR; Tani M; Strieter RM; Tuohy VK; Ransohoff RM
    Am J Pathol; 1997 Feb; 150(2):617-30. PubMed ID: 9033275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2.
    Izikson L; Klein RS; Charo IF; Weiner HL; Luster AD
    J Exp Med; 2000 Oct; 192(7):1075-80. PubMed ID: 11015448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system.
    Müller M; Carter SL; Hofer MJ; Manders P; Getts DR; Getts MT; Dreykluft A; Lu B; Gerard C; King NJ; Campbell IL
    J Immunol; 2007 Sep; 179(5):2774-86. PubMed ID: 17709491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.