These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 16223678)
1. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors. Kirpalani DM; McQuinn KJ Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678 [TBL] [Abstract][Full Text] [Related]
2. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. Merouani S; Hamdaoui O; Saoudi F; Chiha M J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524 [TBL] [Abstract][Full Text] [Related]
3. Method for comparing the efficiency of ultrasound irradiation independent of the shape and the volume of the reaction vessel in sonochemical experiments. Gáplovský A; Gáplovský M; Kimura T; Toma S; Donovalova J; Vencel T Ultrason Sonochem; 2007 Sep; 14(6):695-8. PubMed ID: 17188015 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of alkylarenes using aqueous potassium permanganate under cavitation: comparison of acoustic and hydrodynamic techniques. Ambulgekar GV; Samant SD; Pandit AB Ultrason Sonochem; 2005 Jan; 12(1-2):85-90. PubMed ID: 15474957 [TBL] [Abstract][Full Text] [Related]
5. Use of chemical dosimetry for comparison of ultrasound and ionizing radiation effects on cavitation. Kratochvíl B; Mornstein V Physiol Res; 2007; 56 Suppl 1():S77-S84. PubMed ID: 17552892 [TBL] [Abstract][Full Text] [Related]
6. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Asakura Y; Nishida T; Matsuoka T; Koda S Ultrason Sonochem; 2008 Mar; 15(3):244-50. PubMed ID: 17548225 [TBL] [Abstract][Full Text] [Related]
7. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Sokka SD; Gauthier TP; Hynynen K Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744 [TBL] [Abstract][Full Text] [Related]
9. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis. Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953 [TBL] [Abstract][Full Text] [Related]
10. Investigation of acoustic cavitation energy in a large-scale sonoreactor. Son Y; Lim M; Khim J Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557 [TBL] [Abstract][Full Text] [Related]
11. Stability of alteplase in presence of cavitation. Soltani A; Prokop AF; Vaezy S Ultrasonics; 2008 Apr; 48(2):109-16. PubMed ID: 18067940 [TBL] [Abstract][Full Text] [Related]
12. Sonochemical and sonocatalytic degradation of monolinuron in water. Zouaghi R; David B; Suptil J; Djebbar K; Boutiti A; Guittonneau S Ultrason Sonochem; 2011 Sep; 18(5):1107-12. PubMed ID: 21482475 [TBL] [Abstract][Full Text] [Related]
13. Dual frequency cavitation event sensor with iodide dosimeter. Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909 [TBL] [Abstract][Full Text] [Related]
14. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Klíma J; Frias-Ferrer A; González-García J; Ludvík J; Sáez V; Iniesta J Ultrason Sonochem; 2007 Jan; 14(1):19-28. PubMed ID: 16545594 [TBL] [Abstract][Full Text] [Related]
15. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound. Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie Z; Hassan ZM Ultrason Sonochem; 2007 Sep; 14(6):783-9. PubMed ID: 17347019 [TBL] [Abstract][Full Text] [Related]
16. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations. Ghodbane H; Hamdaoui O Ultrason Sonochem; 2009 Jun; 16(5):593-8. PubMed ID: 19109046 [TBL] [Abstract][Full Text] [Related]
17. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832 [TBL] [Abstract][Full Text] [Related]
18. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. McDannold N; Vykhodtseva N; Hynynen K Phys Med Biol; 2006 Feb; 51(4):793-807. PubMed ID: 16467579 [TBL] [Abstract][Full Text] [Related]
19. Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants. Sostaric JZ; Weavers LK Ultrason Sonochem; 2010 Aug; 17(6):1021-6. PubMed ID: 20036177 [TBL] [Abstract][Full Text] [Related]
20. Physical features of ultrasound-enhanced heterogeneous permanganate oxidation. Kuppa R; Moholkar VS Ultrason Sonochem; 2010 Jan; 17(1):123-31. PubMed ID: 19502092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]