These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16223877)

  • 41. Lipid-dependent gating of a voltage-gated potassium channel.
    Zheng H; Liu W; Anderson LY; Jiang QX
    Nat Commun; 2011; 2():250. PubMed ID: 21427721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Do lipids show state-dependent affinity to the voltage-gated potassium channel KvAP?
    Faure É; Thompson C; Blunck R
    J Biol Chem; 2014 Jun; 289(23):16452-61. PubMed ID: 24742679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstitution of a Kv channel into lipid membranes for structural and functional studies.
    Lee S; Zheng H; Shi L; Jiang QX
    J Vis Exp; 2013 Jul; (77):e50436. PubMed ID: 23892292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.
    Doherty T; Su Y; Hong M
    J Mol Biol; 2010 Aug; 401(4):642-52. PubMed ID: 20600109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voltage-sensor movements in the Eag Kv channel under an applied electric field.
    Mandala VS; MacKinnon R
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2214151119. PubMed ID: 36331999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular dynamic simulation of the Kv1.2 voltage-gated potassium channel in open and closed state conformations.
    Han M; Zhang JZ
    J Phys Chem B; 2008 Dec; 112(51):16966-74. PubMed ID: 19093881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.
    Mishima E; Sato Y; Nanatani K; Hoshi N; Lee JK; Schiller N; von Heijne G; Sakaguchi M; Uozumi N
    Biochem J; 2016 Dec; 473(23):4361-4372. PubMed ID: 27694387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.
    Neale EJ; Rong H; Cockcroft CJ; Sivaprasadarao A
    J Biol Chem; 2007 Dec; 282(52):37597-604. PubMed ID: 17951256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.
    Richardson J; Blunck R; Ge P; Selvin PR; Bezanilla F; Papazian DM; Correa AM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15865-70. PubMed ID: 17043236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology.
    Tao X; MacKinnon R
    Elife; 2019 Nov; 8():. PubMed ID: 31755864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.
    Li Q; Wanderling S; Sompornpisut P; Perozo E
    Nat Struct Mol Biol; 2014 Feb; 21(2):160-6. PubMed ID: 24413055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.
    Faure É; Starek G; McGuire H; Bernèche S; Blunck R
    J Biol Chem; 2012 Nov; 287(47):40091-8. PubMed ID: 23019337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel.
    Jung HJ; Lee JY; Kim SH; Eu YJ; Shin SY; Milescu M; Swartz KJ; Kim JI
    Biochemistry; 2005 Apr; 44(16):6015-23. PubMed ID: 15835890
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and hydration of membranes embedded with voltage-sensing domains.
    Krepkiy D; Mihailescu M; Freites JA; Schow EV; Worcester DL; Gawrisch K; Tobias DJ; White SH; Swartz KJ
    Nature; 2009 Nov; 462(7272):473-9. PubMed ID: 19940918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
    Banerjee A; MacKinnon R
    J Mol Biol; 2008 Sep; 381(3):569-80. PubMed ID: 18632115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of terminal dipole charges in aggregation of α-helix pair in the voltage gated K(+) channel.
    Adhya L; Mapder T; Adhya S
    Biochim Biophys Acta; 2013 Feb; 1828(2):845-50. PubMed ID: 23159811
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers.
    Tao X; MacKinnon R
    J Mol Biol; 2008 Sep; 382(1):24-33. PubMed ID: 18638484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Answers and questions from the KvAP structures.
    Cohen BE; Grabe M; Jan LY
    Neuron; 2003 Jul; 39(3):395-400. PubMed ID: 12895415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atomic constraints between the voltage sensor and the pore domain in a voltage-gated K+ channel of known structure.
    Lewis A; Jogini V; Blachowicz L; Lainé M; Roux B
    J Gen Physiol; 2008 Jun; 131(6):549-61. PubMed ID: 18504314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid bilayer modules as determinants of K+ channel gating.
    Syeda R; Santos JS; Montal M
    J Biol Chem; 2014 Feb; 289(7):4233-43. PubMed ID: 24362039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.