These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16224703)

  • 1. Experimental evolution of Pseudomonas fluorescens in simple and complex environments.
    Barrett RD; MacLean RC; Bell G
    Am Nat; 2005 Oct; 166(4):470-80. PubMed ID: 16224703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental adaptation to high and low quality environments under different scales of temporal variation.
    Buckling A; Brockhurst MA; Travisano M; Rainey PB
    J Evol Biol; 2007 Jan; 20(1):296-300. PubMed ID: 17210022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of diversification in evolving Pseudomonas populations.
    Barrett RD; Bell G
    Evolution; 2006 Mar; 60(3):484-90. PubMed ID: 16637494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the experimental evolution of specialization and diversity in heterogeneous environments.
    Jasmin JN; Kassen R
    Ecol Lett; 2007 Apr; 10(4):272-81. PubMed ID: 17355566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a single niche specialist in variable environments.
    Jasmin JN; Kassen R
    Proc Biol Sci; 2007 Nov; 274(1626):2761-7. PubMed ID: 17725975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive landscapes in evolving populations of Pseudomonas fluorescens.
    Melnyk AH; Kassen R
    Evolution; 2011 Nov; 65(11):3048-59. PubMed ID: 22023573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decay of unused characters by selection and drift.
    Hall AR; Colegrave N
    J Evol Biol; 2008 Mar; 21(2):610-7. PubMed ID: 18081745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation limits diversification of experimental bacterial populations.
    Buckling A; Wills MA; Colegrave N
    Science; 2003 Dec; 302(5653):2107-9. PubMed ID: 14684817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens.
    Schick A; Bailey SF; Kassen R
    Am Nat; 2015 Oct; 186 Suppl 1():S48-59. PubMed ID: 26656216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution of adaptive niche construction in experimental microbial populations.
    Callahan BJ; Fukami T; Fisher DS
    Evolution; 2014 Nov; 68(11):3307-16. PubMed ID: 25138718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil.
    Luján AM; Gómez P; Buckling A
    Biol Lett; 2015 Feb; 11(2):20140934. PubMed ID: 25694506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental adaptive radiation in Pseudomonas.
    MacLean RC; Bell G
    Am Nat; 2002 Nov; 160(5):569-81. PubMed ID: 18707508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens.
    MacLean RC; Bell G; Rainey PB
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8072-7. PubMed ID: 15150419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of selection environment on the probability of parallel evolution.
    Bailey SF; Rodrigue N; Kassen R
    Mol Biol Evol; 2015 Jun; 32(6):1436-48. PubMed ID: 25761765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A shared coevolutionary history does not alter the outcome of coalescence in experimental populations of Pseudomonas fluorescens.
    Castledine M; Buckling A; Padfield D
    J Evol Biol; 2019 Jan; 32(1):58-65. PubMed ID: 30346633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.
    Zhang XX; George A; Bailey MJ; Rainey PB
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.