These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 16224770)
1. A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. Flamigni L; Talarico AM; Ventura B; Rein R; Solladié N Chemistry; 2006 Jan; 12(3):701-12. PubMed ID: 16224770 [TBL] [Abstract][Full Text] [Related]
2. A functionalized noncovalent macrocyclic multiporphyrin assembly from a dizinc(II) bis-porphyrin receptor and a free-base dipyridylporphyrin. Iengo E; Zangrando E; Alessio E; Chambron JC; Heitz V; Flamigni L; Sauvage JP Chemistry; 2003 Dec; 9(23):5879-87. PubMed ID: 14673860 [TBL] [Abstract][Full Text] [Related]
3. Chemical models for aspects of the photosynthetic reaction centre: synthesis and photophysical properties of tris- and tetrakis-porphyrins that resemble the arrangement of chromophores in the natural system. Crossley MJ; Sintic PJ; Hutchison JA; Ghiggino KP Org Biomol Chem; 2005 Mar; 3(5):852-65. PubMed ID: 15731872 [TBL] [Abstract][Full Text] [Related]
4. Triplet-triplet energy transfer controlled by the donor-acceptor distance in rigidly held palladium-containing cofacial bisporphyrins. Faure S; Stern C; Espinosa E; Douville J; Guilard R; Harvey PD Chemistry; 2005 May; 11(11):3469-81. PubMed ID: 15812878 [TBL] [Abstract][Full Text] [Related]
5. Three-component noncovalent assembly consisting of a central tetrakis-4-pyridyl porphyrin and two lateral gable-like bis-Zn porphyrins. Beyler M; Heitz V; Sauvage JP; Ventura B; Flamigni L; Rissanen K Inorg Chem; 2009 Sep; 48(17):8263-70. PubMed ID: 19670879 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular chirogenesis in zinc porphyrins: interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Borovkov VV; Lintuluoto JM; Hembury GA; Sugiura M; Arakawa R; Inoue Y J Org Chem; 2003 Sep; 68(19):7176-92. PubMed ID: 12968867 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms, pathways, and dynamics of excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures. Song HE; Kirmaier C; Schwartz JK; Hindin E; Yu L; Bocian DF; Lindsey JS; Holten D J Phys Chem B; 2006 Oct; 110(39):19121-30. PubMed ID: 17004759 [TBL] [Abstract][Full Text] [Related]
8. Energy migration in a self-assembled nonameric porphyrinic molecular box. Flamigni L; Ventura B; Oliva AI; Ballester P Chemistry; 2008; 14(14):4214-24. PubMed ID: 18381736 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the singlet-singlet through-space energy transfer rates in cofacial bisporphyrin and porphyrin-corrole dyads. Gros CP; Brisach F; Meristoudi A; Espinosa E; Guilard R; Harvey PD Inorg Chem; 2007 Jan; 46(1):125-35. PubMed ID: 17198420 [TBL] [Abstract][Full Text] [Related]
10. [Studies on tailed metalloporphyrin coordination compounds. IX. Synthesis of tailed porphyrin with covalently linked phenylalanine and its fluorescence property]. Liu H; Huang J; Lei H; Zeng C; Ji L; Chen R Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Apr; 19(2):151-3. PubMed ID: 15818990 [TBL] [Abstract][Full Text] [Related]
11. Photodynamics in stable complexes composed of a zinc porphyrin tripod and pyridyl porphyrins assembled by multiple coordination bonds. Takai A; Gros CP; Barbe JM; Fukuzumi S Phys Chem Chem Phys; 2010 Oct; 12(38):12160-8. PubMed ID: 20714588 [TBL] [Abstract][Full Text] [Related]
12. Effects of multiple pathways on excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures. Song HE; Kirmaier C; Schwartz JK; Hindin E; Yu L; Bocian DF; Lindsey JS; Holten D J Phys Chem B; 2006 Oct; 110(39):19131-9. PubMed ID: 17004760 [TBL] [Abstract][Full Text] [Related]
13. Molecular tools for the self-assembly of bisporphyrin photodyads: a comprehensive physicochemical and photophysical study. Brandel J; Trabolsi A; Traboulsi H; Melin F; Koepf M; Wytko JA; Elhabiri M; Weiss J; Albrecht-Gary AM Inorg Chem; 2009 Apr; 48(8):3743-54. PubMed ID: 19296613 [TBL] [Abstract][Full Text] [Related]
14. Regioisomeric control induced by DABCO coordination to rotatable self-assembled bis- and tetraporphyrin α,γ-cyclic octapeptide dimers. Hernández-Eguía LP; Brea RJ; Castedo L; Ballester P; Granja JR Chemistry; 2011 Jan; 17(4):1220-9. PubMed ID: 21243688 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced electron transfer in multiporphyrinic interlocked structures: the effect of copper(I) coordination in the central site. Flamigni L; Talarico AM; Chambron JC; Heitz V; Linke M; Fujita N; Sauvage JP Chemistry; 2004 Jun; 10(11):2689-99. PubMed ID: 15195300 [TBL] [Abstract][Full Text] [Related]
17. Dendron to central core S1-S1 and S2-S(n) (n>1) energy transfers in artificial special pairs containing dendrimers with limited numbers of conformations. Harvey PD; Brégier F; Aly SM; Szmytkowski J; Paige MF; Steer RP Chemistry; 2013 Mar; 19(13):4352-68. PubMed ID: 23371815 [TBL] [Abstract][Full Text] [Related]
18. Photoinduced electron transfer in bisporphyrin-diimide complexes. Flamigni L; Johnston MR; Giribabu L Chemistry; 2002 Sep; 8(17):3938-47. PubMed ID: 12360935 [TBL] [Abstract][Full Text] [Related]
19. Photophysical behavior and intramolecular energy transfer in Os(II) diimine complexes covalently linked to anthracene. Balazs GC; del Guerzo A; Schmehl RH Photochem Photobiol Sci; 2005 Jan; 4(1):89-94. PubMed ID: 15616697 [TBL] [Abstract][Full Text] [Related]
20. Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers. Larsen J; Brüggemann B; Khoury T; Sly J; Crossley MJ; Sundström V; Akesson E J Phys Chem A; 2007 Oct; 111(42):10589-97. PubMed ID: 17914756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]