BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16224804)

  • 1. New hybrid bidentate ligands as precursors for smart catalysts.
    Goettmann F; Boissière C; Grosso D; Mercier F; Le Floch P; Sanchez C
    Chemistry; 2005 Dec; 11(24):7416-26. PubMed ID: 16224804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent anchoring of homogeneous catalysts to silica supports with well-defined binding sites.
    Chen R; Bronger RP; Kamer PC; van Leeuwen PW; Reek JN
    J Am Chem Soc; 2004 Nov; 126(44):14557-66. PubMed ID: 15521776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem hydroformylation-hydrogenation of 1-decene catalyzed by Rh-bidentate bis(trialkylphosphine)s.
    Ichihara T; Nakano K; Katayama M; Nozaki K
    Chem Asian J; 2008 Sep; 3(8-9):1722-8. PubMed ID: 18683162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation?
    Reetz MT; Meiswinkel A; Mehler G; Angermund K; Graf M; Thiel W; Mynott R; Blackmond DG
    J Am Chem Soc; 2005 Jul; 127(29):10305-13. PubMed ID: 16028942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodium complex with ethylene ligands supported on highly dehydroxylated MgO: synthesis, characterization, and reactivity.
    Bhirud VA; Ehresmann JO; Kletnieks PW; Haw JF; Gates BC
    Langmuir; 2006 Jan; 22(1):490-6. PubMed ID: 16378464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polar phase hydroformylation: the dramatic effect of water on mono- and dirhodium catalysts.
    Aubry DA; Bridges NN; Ezell K; Stanley GG
    J Am Chem Soc; 2003 Sep; 125(37):11180-1. PubMed ID: 16220923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins.
    Jia X; Wang Z; Xia C; Ding K
    Chemistry; 2012 Nov; 18(48):15288-95. PubMed ID: 23135928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silylation of a Co/SiO2 catalyst. Characterization and exploitation of the CO hydrogenation reaction.
    Ojeda M; Pérez-Alonso FJ; Terreros P; Rojas S; Herranz T; López Granados M; Fierro JL
    Langmuir; 2006 Mar; 22(7):3131-7. PubMed ID: 16548568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of interfacial adsorption in the biphasic hydroformylation of higher olefins promoted by cyclodextrins: a molecular dynamics study at the decene/water interface.
    Sieffert N; Wipff G
    Chemistry; 2007; 13(7):1978-90. PubMed ID: 17143921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory.
    Sparta M; Børve KJ; Jensen VR
    J Am Chem Soc; 2007 Jul; 129(27):8487-99. PubMed ID: 17555314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodium-complex-catalyzed asymmetric hydrogenation: transformation of precatalysts into active species.
    Preetz A; Drexler HJ; Fischer C; Dai Z; Börner A; Baumann W; Spannenberg A; Thede R; Heller D
    Chemistry; 2008; 14(5):1445-51. PubMed ID: 18034444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity.
    Marras F; Wang J; Coppens MO; Reek JN
    Chem Commun (Camb); 2010 Sep; 46(35):6587-9. PubMed ID: 20697633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopically distinct sites present in methyltrioxorhenium grafted onto silica-alumina, and their abilities to initiate olefin metathesis.
    Moses AW; Raab C; Nelson RC; Leifeste HD; Ramsahye NA; Chattopadhyay S; Eckert J; Chmelka BF; Scott SL
    J Am Chem Soc; 2007 Jul; 129(28):8912-20. PubMed ID: 17595088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Heterogeneous Rh-Containing Catalysts Immobilized on a Hybrid Organic-Inorganic Surface for Hydroformylation of Unsaturated Compounds.
    Gorbunov D; Safronova D; Kardasheva Y; Maximov A; Rosenberg E; Karakhanov E
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26566-26575. PubMed ID: 29979868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using rh complexes with tetraphosphorus ligands.
    Yu S; Chie YM; Guan ZH; Zhang X
    Org Lett; 2008 Aug; 10(16):3469-72. PubMed ID: 18616258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.
    Zhang L; Abbenhuis HC; Gerritsen G; Bhriain NN; Magusin PC; Mezari B; Han W; van Santen RA; Yang Q; Li C
    Chemistry; 2007; 13(4):1210-21. PubMed ID: 17066470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly regioselective terminal alkynes hydroformylation and Pauson-Khand reaction catalysed by mesoporous organised zirconium oxide based powders.
    Goettmann F; Le Floch P; Sanchez C
    Chem Commun (Camb); 2006 Jan; (2):180-2. PubMed ID: 16372098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The co-entrapment of a homogeneous catalyst and an ionic liquid by a sol-gel method: recyclable ionogel hydrogenation catalysts.
    Craythorne SJ; Anderson K; Lorenzini F; McCausland C; Smith EF; Licence P; Marr AC; Marr PC
    Chemistry; 2009 Jul; 15(29):7094-100. PubMed ID: 19533728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of isocyanide ligands for catalysis: application to Rh-catalyzed hydrosilylation of ketones.
    Ito H; Kato T; Sawamura M
    Chem Asian J; 2007 Nov; 2(11):1436-46. PubMed ID: 17918762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.