These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 16225149)
1. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc. Riches PE; McNally DS Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Cheung JT; Zhang M; Chow DH Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
5. Fluid flow and convective transport of solutes within the intervertebral disc. Ferguson SJ; Ito K; Nolte LP J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324 [TBL] [Abstract][Full Text] [Related]
6. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. Hsieh AH; Wagner DR; Cheng LY; Lotz JC J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658 [TBL] [Abstract][Full Text] [Related]
7. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
8. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748 [TBL] [Abstract][Full Text] [Related]
9. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress. Wang P; Yang L; Hsieh AH Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369 [TBL] [Abstract][Full Text] [Related]
10. The internal mechanics of the intervertebral disc under cyclic loading. Riches PE; Dhillon N; Lotz J; Woods AW; McNally DS J Biomech; 2002 Sep; 35(9):1263-71. PubMed ID: 12163315 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of nucleus pulposus fluid velocity and pressure alteration induced by cartilage endplate sclerosis using a poro-elastic finite element analysis. Hassan CR; Lee W; Komatsu DE; Qin YX Biomech Model Mechanobiol; 2021 Feb; 20(1):281-291. PubMed ID: 32949306 [TBL] [Abstract][Full Text] [Related]
12. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Malandrino A; Lacroix D; Hellmich C; Ito K; Ferguson SJ; Noailly J Osteoarthritis Cartilage; 2014 Jul; 22(7):1053-60. PubMed ID: 24857972 [TBL] [Abstract][Full Text] [Related]
13. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve. Ayotte DC; Ito K; Perren SM; Tepic S J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378 [TBL] [Abstract][Full Text] [Related]
14. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. Recuerda M; Coté SP; Villemure I; Périé D J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745 [TBL] [Abstract][Full Text] [Related]
15. The effect of creep on human lumbar intervertebral disk impact mechanics. Jamison D; Marcolongo MS J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391 [TBL] [Abstract][Full Text] [Related]
16. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies. Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation. Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111 [TBL] [Abstract][Full Text] [Related]
18. Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear. Lee KK; Teo EC J Spinal Disord Tech; 2004 Oct; 17(5):429-38. PubMed ID: 15385884 [TBL] [Abstract][Full Text] [Related]
19. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. Lu YM; Hutton WC; Gharpuray VM J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680 [TBL] [Abstract][Full Text] [Related]
20. Role of load history in intervertebral disc mechanics and intradiscal pressure generation. Hwang D; Gabai AS; Yu M; Yew AG; Hsieh AH Biomech Model Mechanobiol; 2012 Jan; 11(1-2):95-106. PubMed ID: 21380846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]