These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16225153)

  • 21. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.
    Longest PW; Kleinstreuer C
    J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.
    Kabinejadian F; Ghista DN; Su B; Nezhadian MK; Chua LP; Yeo JH; Leo HL
    Med Eng Phys; 2014 Oct; 36(10):1233-45. PubMed ID: 25103345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of the influence of anastomotic configuration on hemodynamics in miller cuff models.
    Xiong FL; Chong CK
    Ann Biomed Eng; 2009 Feb; 37(2):301-14. PubMed ID: 19082894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors.
    Brien TO; Walsh M; McGloughlin T
    Ann Biomed Eng; 2005 Mar; 33(3):310-22. PubMed ID: 15868721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel modular anastomotic valve device for hemodialysis vascular access: preliminary computational hemodynamic assessment.
    McNally A; Akingba AG; Robinson EA; Sucosky P
    J Vasc Access; 2014; 15(6):448-60. PubMed ID: 25198822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical investigation of blood flow in a sequential aorto-coronary bypass graft model.
    S M; Ghista DN; Chua LP; Seng TY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():875-8. PubMed ID: 17945605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis.
    Hughes PE; How TV
    J Biomech; 1996 Jul; 29(7):855-72. PubMed ID: 8809616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses.
    Cole JS; Wijesinghe LD; Watterson JK; Scott DJ
    Proc Inst Mech Eng H; 2002; 216(2):135-43. PubMed ID: 12022420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow dynamics of the St Jude Medical Symmetry aortic connector vein graft anastomosis do not contribute to the risk of acute thrombosis.
    Redaelli A; Maisano F; Ligorio G; Cattaneo E; Montevecchi FM; Alfieri O
    J Thorac Cardiovasc Surg; 2004 Jul; 128(1):117-23. PubMed ID: 15224030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.