These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16225154)

  • 1. Injection-moulded models of major and minor arteries: the variability of model wall thickness owing to casting technique.
    O'Brien T; Morris L; O'Donnell M; Walsh M; McGloughlin T
    Proc Inst Mech Eng H; 2005 Sep; 219(5):381-6. PubMed ID: 16225154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D reconstruction and manufacture of real abdominal aortic aneurysms: from CT scan to silicone model.
    Doyle BJ; Morris LG; Callanan A; Kelly P; Vorp DA; McGloughlin TM
    J Biomech Eng; 2008 Jun; 130(3):034501. PubMed ID: 18532870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area.
    Friedman MH; Bargeron CB; Hutchins GM; Mark FF; Deters OJ
    J Biomech Eng; 1980 Aug; 102(3):247. PubMed ID: 19530808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer aided design and fabrication of models for in vitro studies of vascular fluid dynamics.
    Chong CK; Rowe CS; Sivanesan S; Rattray A; Black RA; Shortland AP; How TV
    Proc Inst Mech Eng H; 1999; 213(1):1-4. PubMed ID: 10087899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An object-oriented modelling framework for the arterial wall.
    Balaguera MI; BriceƱo JC; Glazier JA
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):135-42. PubMed ID: 19603305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanical model of artery buckling.
    Han HC
    J Biomech; 2007; 40(16):3672-8. PubMed ID: 17689541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure.
    Ley O; Kim T
    Biomed Eng Online; 2007 Mar; 6():8. PubMed ID: 17331253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incompressibility of the human arterial wall: an in vitro ultrasound study.
    Girerd XJ; Acar C; Mourad JJ; Boutouyrie P; Safar ME; Laurent S
    J Hypertens Suppl; 1992 Aug; 10(6):S111-4. PubMed ID: 1432310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 1: A review of models for arterial wall behaviour.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):229-40. PubMed ID: 9769691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a range of anatomically realistic renal artery flow phantoms.
    King DM; Ring M; Moran CM; Browne JE
    Ultrasound Med Biol; 2010 Jul; 36(7):1135-44. PubMed ID: 20620700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voronoi polyhedra analysis of optimized arterial tree models.
    Karch R; Neumann F; Neumann M; Szawlowski P; Schreiner W
    Ann Biomed Eng; 2003 May; 31(5):548-63. PubMed ID: 12757199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation.
    Armillotta A; Bonhoeffer P; Dubini G; Ferragina S; Migliavacca F; Sala G; Schievano S
    Proc Inst Mech Eng H; 2007 May; 221(4):407-16. PubMed ID: 17605398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element models for arterial wall mechanics.
    Simon BR; Kaufmann MV; McAfee MA; Baldwin AL
    J Biomech Eng; 1993 Nov; 115(4B):489-96. PubMed ID: 8302030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of lower limb axial arterial length change during locomotion.
    Young MD; Streicher MC; Beck RJ; van den Bogert AJ; Tajaddini A; Davis BL
    J Biomech; 2012 May; 45(8):1485-90. PubMed ID: 22386106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial elastic modulus for fixed and varied wall volume.
    Wheeldon J; Hennes M; Stinnett H
    Biomed Sci Instrum; 1993; 29():451-6. PubMed ID: 8329626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 2: Development of coupled fluid-solid algorithms.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):241-52. PubMed ID: 9769692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans.
    Thijssen DH; Dawson EA; van den Munckhof IC; Birk GK; Timothy Cable N; Green DJ
    Atherosclerosis; 2013 Aug; 229(2):282-6. PubMed ID: 23880177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.